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Abstract— This paper presents an approach to exploit the
richer information of sensor data provided by 3d laser
rangefinders for the purpose of person tracking. Introduced
is a method to adapt the observation model of a particle filter,
to identify partial and full occlusions of a person, to determine
the amount of occlusion behind an obstacle, and the occluding
obstacle itself. This is done by tracing rays from positions near
the person to the sensor and determining whether the ray hits
an obstacle. The laser range data is represented using a voxel
grid, which facilitates efficient retrieval and data reduction. As
our experiments show, our proposed tracking approach is able
to reliably keep track of a person in real-time, even when only
partially visible, when moving in uneven terrain, or when the
person passes closely another person of different size.

I. I NTRODUCTION

Person tracking is a key technology not only for au-
tonomous systems operating in populated environments, but
it can also be used in various other fields of application. For
instance, driver assistance systems could detect and estimate
future positions of pedestrians and issue a warning or even
actively perform maneuver corrections. Also, for service
robots it is indispensable to detect, track and react to humans
in their vicinity. Furthermore, surveillance systems for public
places, museums, etc. can be thought of, based on a tracking
system. In order to avoid collisions with humans in populated
environments simple collision avoidance algorithms may be
sufficient to trigger emergency breaks as humans are detected
in the immediate vicinity of the robot. However, a robust
tracking system provides the whole path of people and robots
can incorporate this additional information in their global
motion planning. This enables a dynamic and more efficient
path replanning without stopping.

In this paper, we present a robust, particle filter based
tracking system that uses 3d range data from a 3d laser
rangefinder instead of 2d range data. Two-dimensional laser
range data represent only a slice of the environment. This
reduced perspective on things has the effect that relevant
objects, esp. the tracked target, and irrelevant objects can be
erroneously confused. The used 3d laser range data in our
approach offers far more comprehensive information so that
the whole body of a person can be detected, which leads to a
better discrimination between relevant and irrelevant objects
and a better data association based thereon.
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Fig. 1. The tracking approach using 3d laser range scans in different
scenarios. The upper figure shows a scene with partial occlusion by a
detected obstacle (orange). The observation model is adapted accordingly.
The lower figure depicts the estimated trajectory in an unevenenvironment.

This work focuses on three aspects of the observation
model of the particle filter: (1) By means of a novel occlusion
detection based on ray tracing we can explicitly detect when
a person is occluded, to what extent it is occluded, and detect
the occluding obstacles. This knowledge is used to adapt the
observation model in situations of partial or full occlusions.
(2) By the use of a penalizing term we can distinguish the
tracked person from another person of different size and
continue the track without much confusion, even if both
persons occlude each other. (3) Based on a three-dimensional
motion model in combination with the observation model we
can track people in uneven terrain.

The paper is organized as follows. In section II we briefly
summarize related work. Then, in section III, a general
overview outlines the basic ideas of our tracking approach.
The upfollowing sections describe the main parts in more
detail and present our adaptive observation model. Starting
with section IV, we introduce the underlying data structure
which is the foundation of our adaptive observation model.
In section V the adaptive observation model for handling
partial and full occlusions is thoroughly explained. Next,
in section VI we experimentally evaluate our approach in
different scenarios. Finally, in section VII we conclude and
discuss future work.



II. RELATED WORK

Over the years several tracking approaches were proposed
using particle filters and 2d laser range sensors. However,
recently more and more approaches also use 3d laser range
data to improve person detection and object tracking. The
main disadvantages of using a 2d laserscanner are the fixed
height of the sensor and that only a slice of the environment
is observable. A common practice is to mount the laserscan-
ner in the height of a person’s tibia, such that the movements
of the legs can be detected. But this may lead to a loss of the
tracked person in uneven terrain or the confusion of different
persons.

3d laser rangefinders can be applied to overcome these
shortcomings, as shown by the following approaches.
Navarro-Sermentet al.[1], [2] used 3d laser range data to
improve the robustness of a 2d tracker by a 3d detection of
humans, and extracting a so-called virtual scan slice from
the 3d laser range data using an elevation map. A similar
approach was applied by Petrovskaya and Thrun [3] to track
vehicles. They also extracted a virtual 2d scan from the 3d
data which allows them to use an existing 2d particle filter-
based tracker to track vehicles. But these approaches still
cannot handle occlusions properly.

Recently some approaches to detect people in 3d laser
scans were proposed. Mozoset al.[4] used multiple 2d laser
scanners mounted in different fixed heights to detect the
legs, the upper body and the head of people in cluttered
environments using an AdaBoost-based classification, which
leads to better tracking results even during occlusions. Onthe
other hand one is constrained to persons of specific measures
because of the fixed mounting heights. Spinelloet al.[5] also
used AdaBoost to learn a model of humans, but they used
actual 3d laser range scans from a Velodyne HDL 64-E laser
range scanner.

Several approaches were proposed to handle occlusions
explicitly. In the approach of Arraset al.[6], a multi-
hypothesis leg tracker was presented, which explicitly mod-
els occlusions. Besides the usual labels of a track (detection
and deletion) a third label for occlusion of tracks was
introduced. Due to the tracking of separate legs this also
includes self-occlusions by moving legs. Using this approach
a significant reduction of false-positive initializationsof
tracks was achieved. Taylor and Kleeman [7] handled self-
occlusions by a geometric model of the person. The scan
shadow in respect to the front and rear leg indicates when
it is more likely to detect both legs. In contrast to these
approaches, we do not need to rely only on moving legs in
the sensor data stream or have to analyze the self occlusion
of the legs. We can take the whole body of the person as
an observation and modify our observation model to account
for partial and full occlusions. To the best of our knowledge,
this is the first work on explicit occlusion handling in 3d
laser range data.

III. T HE OVERALL TRACKING APPROACH

The use of 3d laser range data for person tracking has
the huge advantage that the full information about the 3d

geometric structure of the robot’s environment is perceived
and can be utilized during tracking. However, this advantage
comes at the expense of a vastly increased number of
individual range measurements per second that needs to be
processed online. For this purpose our approach maintains a
regular grid of voxels to store the 3d points corresponding to
the measurements and also to estimate the occupancy state
of regions in the environment. In comparison tokd-trees [8]
or octrees [9], which are frequently used in 3d mapping for
this purpose, the grid-based representation allows to insert
and query laser points in constant time.

Based on the voxel grid, our approach maintains a particle
filter to track individual objects. In our current implementa-
tion we assume that the person’s dynamics is governed by
a simple three dimensional constant velocity model, i.e.. the
person’s state at timet is described by the 6-dimensional
vector xt = (x, y, z, vx, vy, vz)t, where pt = (x, y, z)t
denotes the position andvt = (vx, vy, vz)t the velocity of
the person at timet. The particle filter represents the person’s
state density by a set of weighted samplesSt = {s(i)}1≤i≤N ,
si = (x

(i)
t , w

(i)
t ). Based on the constant velocity model, the

prediction step of the particle filter is implemented as

(x, y, z)
(i)
t = (x, y, z)

(i)
t−1 + (vx, vy, vz)

(i)
t−1. (1)

The predicted velocity of a position hypothesis is updated
according to

(vx, vy, vz)
(i)
t = (vx, vy, vz)

(i)
t−1 + (ǫx, ǫy, ǫz) (2)

where ǫx ∼ N (0, σ2
x), ǫy ∼ N (0, σ2

y), and ǫz ∼ N (0, σ2
z)

are normally distributed noise terms that allow to adapt to
velocity changes of the person.

The position estimate of the particle filter is the weighted
average position of the particles,

p̂t =

N
∑

i=1

w
(i)
t · p

(i)
t (3)

The main innovation of our tracking approach lies in the
design and the evaluation of the probabilistic observation
modelP (zt |x

(i)
t ) used to update the particle filter based on

the voxel grid computed from the 3d laser range scans. In the
subsequent sections, we will describe this observation model
in detail; we will explain how occupied voxels originating
from a moving person can be extracted fast, how partial and
full occlusions can be taken into account, and also how size
information about the person being tracked can be utilized
during tracking.

As the focus of this work is on this observation model,
we restricted our current implementation to tracking single
objects from a stationary platform. However, in conjunction
with an appropriate data association algorithm it should be
easily generalizable to tracking multiple objects, e.g., to a 3d
version of the SJPDAF approach [10].

IV. REPRESENTATION OF THEENVIRONMENT

As mentioned before, we represent the environment by
a regular grid of voxels, which is centered at the sensor’s



position. A voxel is denoted byvi,j,k, where i, j, and k

are the indices of that voxel in the three-dimensional grid.
From the Cartesian coordinates(x, y, z) of a laser point in
the local frame of the laser range sensor, the indices of the
surrounding voxel are given byi = ⌊xρ−1⌋, j = ⌊yρ−1⌋,
andk = ⌊zρ−1⌋, respectively, whereρ is the side length of
a voxel.

The grid is furthermore used as a basis for a three-
dimensional extension of the well-known 2d occupancy grid
map [11]. For the occupancy update, every voxel is visited
and its occupancy valueP (occupiedi,j,k) is increased as
laser beams end in that voxel, i.e., the end points of the beams
are inside the voxel. On the other hand it is decreased if no
laser beam ends in that voxel. So we are using an ”end point
occupancy” instead of a ”beam occupancy”, which would
also increase or decrease the occupancy of voxels along the
laser beam [11]. The occupied voxels are later used to locally
determine occlusions explicitly, as needed. As we will see,
locally calculating the occlusions is far more efficient in 3d
laser range scans than implicitly determining them as in the
”beam occupancy” model usually employed when 2d laser
range scans are used.

Instead of creating a new grid for every scan, we maintain
only a single grid and update it in every iteration. Further-
more we store lists of voxels containing laser points that are
occupied, or are occluded by an obstacle, respectively. Using
these lists only a fraction of all voxels must be traversed to
re-initialize and update the grid as a new scan is available.

As we will see later, by using these lists as well as the
efficient Digital Differential Algorithm (DDA) ray tracing
algorithm [12], [13], a complete iteration – insertion of
laser points, occupancy update, occlusion calculations and
the particle filter update – can be done in real-time.

The particle filter is initialized at positions, where dynam-
ics are detected, since we currently assume that only persons
move in the environment. The basis for this person detection
is the aforementioned occupancy voxel grid. Its underlying
idea is as follows: The occupancy grid map captures the static
structures in the environment. If there is a moving entity the
subset of the 3d point cloud that represents the person does
not cause any voxel to be occupied. Thus, if we take all
voxels that contain points but are not marked as occupied,
we get an initial hypothesis for the position of a person. Due
to the noise in the laser range measurements, we have to post
process the results of this approach. Currently, we analyzethe
number of connected hypothesis voxels and apply a threshold
on that number to filter false positive detections.

V. A DAPTIVE OBSERVATION MODEL

The observation modelP (zt | x
(i)
t ) expects at any time

step a certain number of pointsz that fall on the person.
To weight the particles, we assume this number is normally
distributed, hence,

P (zt |x
(i)
t ) = N

(

zt; z, σ2
z

)

, (4)

where zt is the number of points near a particle,z is the
expected number of points andσ2

z the variance. This way, a

radius r

height h

(x, y, z)
(i)
t

Fig. 2. Bounding box (red) at a given particle position(x, y, z)(i)
t

with
radiusr and heighth. As the person is partially occluded by an obstacle
only some laser beams are reflected by the person. Occupied voxels (blue)
by obstacles and also voxels in front of obstacles (yellow) are not included in
the bounding box and are therefore not taken into account forthe occlusion
calculation or the point count. (Best viewed in color.)

particle gets the highest weight, if there are as many points
near it as expected and lower weights otherwise. This number
is determined by counting the points in a bounding box
around the particles position which is defined as

Br((x, y, z)
(i)
t , h) = {vi,j,k |

∣

∣i−
⌊

xρ−1
⌋
∣

∣ ≤ r ∧ (5)
∣

∣j −
⌊

yρ−1
⌋
∣

∣ ≤ r ∧ (6)

0 ≤ k −
⌊

zρ−1
⌋

≤ h }, (7)

whereh is the height of the box andr its radius. Figure 2
sketches the bounding box in the voxel grid. As the person
moves behind obstacles, some of the voxel can be occupied,
and some are also in front of the obstacle. These voxels are
not included in the bounding box, since these voxels are very
likely to not contain laser end points of the person. Especially
when calculating the occlusion these voxels would cause an
overestimated amount of non-occluded voxels.

Since we want to track people in natural environments
using a 3d laser range scanner, we have to handle differ-
ent types of occlusions: partial and full occlusions. In the
following, we will useoccludedi,j,k and¬occludedi,j,k to
distinguish voxelsvi,j,k that are occluded or non-occluded,
respectively. Figure 3 shows the results in a scene with partial
and full occlusions.

A. Partial Occlusions

As a person enters some space of the environment that
is partially occluded by an obstacle, the number of points
that fall on the person decreases. Thus, the aforementioned
observation model assigns similar weights to all particles
and a divergence of the particles occurs. To avoid this
behavior and to get an accurate position estimate in partially
occluded spaces, we explicitly account for this and adaptz

accordingly.



(a) (b) (c) (d)

Fig. 3. Results with partial and full occlusions. The personwalks around obstacles of different heights. The sensor model of the particle filter is adapted
in the case of partial occlusions and the occluding obstacles are identified. As the person moves behind the first obstacle in (a) the expected amount of
laser points is decreased according to the amount of occludedvoxels behind the obstacle. The same happens behind the second obstacle in (b), where
the particles are visible and show a concentrated shape around the person. As the person steps behind the largest obstacle in (c), the full occlusion is
detected and the particles are uniformly distributed at the occlusion boundaries of the obstacles. When the person leavesthe full occlusion the particles
are concentrated again on the person, as depicted in (d) and the usual tracking is continued.

First, we determine the occlusion ratioω for a particle po-
sition (x, y, z)

(i)
t using the bounding boxBr((x, y, z)

(i)
t , h),

which is defined as follows:

ω =

∣

∣

∣

{

occludedi,j,k

∣

∣

∣
vi,j,k ∈ Br((x, y, z)

(i)
t , h)

}∣

∣

∣

∣

∣

∣
Br((x, y, z)

(i)
t , h)

∣

∣

∣

(8)

Hence,ω is the amount of occluded voxels divided by
the number of voxels in a bounding box at the particle
position that are not occupied and not in front of an obstacle.
Intuitively, as the amount of occluded voxels increases, the
expected number of laser points on the person decreases.
This principle is now integrated in the observation model,
which changes the observation modelP (zt |x

(i)
t ) to

P (zt |x
(i)
t ) ∼ N

(

zt; (1− ω)z, (1− ω)σ2
z

)

. (9)

To determine the occluded voxels insideBr((x, y, z)
(i)
t , h)

for a given particle position, we trace for each voxel in
the bounding box a ray to the sensor. As the ray hits a
voxel that is occupied, i.e.,P

(

occupiedi,j,k
)

≥ 0.5, the
voxel and the traversed voxels are marked as occluded. Only
locally evaluating the occlusion and reusing the results from
previous calculations turned out to be far more efficient
than calculating the occlusion at every time step for the
complete grid. Even though we have to calculate this for
all particles individually. However, in the common case, the
particles are concentrated around the position of the tracked
person, the overlap of the bounding boxes of the particles
is obviously significant and can be exploited by re-using
already computed voxel occlusions.

B. Full Occlusions

If full occlusions were not modelled explicitly, the parti-
cles would spread out over the entire environment (in every
iteration no correction using an observation could be made)
and the person, after leaving the occlusion, could only be
redetected by chance. A common and trivial solution is to
end the track when all particles get the same weights due
to missing detections. However, using the above defined
occlusion ratioω, we can deduce full occlusions – ifω is

greater than a certain threshold, then we are apparently in a
state of full occlusion.

As the tracked target enters full occlusion, indicated by
ω ≥ 0.9, we uniformly distribute the particles at the
boundary of the shadowed area behind the obstacle(s) which
occlude(s) the person. The set of boundary voxels, in the
same heightk as the voxelvi,j,k at the estimated position
p̂t, is determined by region growing. As before, we calculate
the occlusion for every voxel by tracing the ray starting at
the current voxel, which ends at the sensor. Now two cases
can occur:

1) The voxel is occluded by an obstacle, then we proceed
to extend the region by growing to neighboring voxels
that were not visited before.

2) The voxel is not occluded by any obstacle, then we
add the voxel to the boundary voxels.

Now we can uniformly distribute the particles among
the boundary voxels, and evaluate for every particle the
observation model in subsequent iterations without applying
the motion model (cf. fig. 3 (c)). Particles at the boundary get
velocity vectors pointing away from the occlusion, since we
can expect that the person will walk away from the obstacle.
The magnitude of a velocity vector is sampled from the last
velocity magnitudes from the particles. As we detect, that the
person leaves the occlusion, i.e., there are at least300 laser
points in the bounding box around the particle, the particle
filter is re-initialized at the position with maximal confidence,
i.e., the particle that ”sees” the most laser points. Altogether,
the track is continued using the motion model again after the
person has left the occluded space.

C. Person Height

In order to distinguish a tracked person from persons of
different size and to enable a tracking in uneven terrain, we
update a size value for the tracked person. In every scan,
in which the person is partially or fully visible, we take the
current estimated position̂pt, and determine the height of the
person. Starting from the voxel at̂pt we search for the last
voxel in k-direction in the open bounding box that contains
points and take the z-coordinate of that point as the top of



the person. The size is then determined by the difference
between that z-coordinate and the z-coordinate ofp̂t. The
overall size value is then the average size over all scans, in
which the person has been tracked,

hts:tc =
1

ts − tc + 1

tc
∑

t=ts

ht (10)

where ts is the number of the first tracked scan,tc is the
current scan andht is the guessed size in scant. To weight
the particles according to the mismatch in heightht to
the average heighthts:tc , we use the following observation
model

P (zt |x
(i)
t ) ∼N

(

zt; (1− ω)z, (1− ω)σ2
z

)

(11)

·∆(hts:tc − ht, τ) , (12)

where ∆(a, b) denotes the triangle function, defined as
follows:

∆(a, b) =

{

1− |ab−1| , |a| < |b|
0 , otherwise.

(13)

With this additional term non-matching heights are penal-
ized. As we will see, this stabilizes the tracking results, if
persons of different sizes are observable in the environment.
Furthermore, tracking in uneven terrain is possible, since
particle positions beneath the real position are also penalized,
which leads to an adaption of the z-coordinate of the position
vector.

VI. EXPERIMENTAL EVALUATION

We implemented the proposed tracking system in C++ and
conducted several experiments for the tracking of a single
person in static indoor environments and with a stationary
sensor. We used a Velodyne HDL-64E laser scanner mounted
on a tripod in the center of a hall. The Velodyne laser scanner
was rotating with a speed of9 Hz, so that approx.144.000
points per turn were recorded. We used a computer with an
Intel Xeon x5550 CPU with 2.67 GHz using a single core
and 12 GB main memory.

We set the voxel size toρ = 0.125m, since this gave
the best tradeoff between visual results of the estimated
trajectory and a reference trajectory. The grid had a length
and width of19m and a height of2.5m. In all experiments,
we usedM = 500 particles and the expected number
of points z = 950 with standard deviationσz = 140
was experimentally evaluated on a hold-out scene using the
criteria minimal, average, and maximal error to a reference
trajectory, and the number of lost tracks.

A. Runtime

Figure 4 shows the runtime of the approach and the
average accuracy of the estimated trajectory using different
voxel sizesρ. We tested the approach in10 runs for every
voxel resolution.

As we argued in section IV, the update of the occu-
pancy, where we have to traverse all voxels to update their
occupancy, consumed the most time per iteration (approx.
40%). After this follows the computation of the occlusion
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Fig. 4. Runtime of an iteration in milliseconds and average accuracy of the
estimated trajectory using different grid resolutions. Shown are the needed
times for occupancy update, occlusion calculations and other calculations
with less impact on the run time. (Best viewed in color.)

(approx.30%), which needs to trace a ray for every voxel
in the bounding box. The influence of the occlusion update
decreases with greater voxel sizes. The blue horizontal line in
figure 4 depicts the time between two consecutive 3d laser
range scans, thus we can process and update the particle
filter using a complete turn in real-time withρ = 0.1m.
Also visible is a decrease in the accuracy as the grid resolu-
tion increases. In turn, the depicted standard deviation also
increases, which is also visually observable in the estimated
trajectories. Hence, we decided to useρ = 0.125m for all
experiments in this rest of this section.

B. Partial and full occlusions

To evaluate the robustness of our approach against partial
and full occlusions, we placed three different obstacles in
the hall with heights of1 m, 1.2 m, and2 m, respectively.
Two obstacle configurations were tested. In the first scene the
obstacles are placed side by side with small gaps between
them and the person walks behind every obstacle (cf. figure
6 middle). As introduced in section V-B our approach
uniformly distributes the particles at the visibility boundaries
of the obstacle, when a full occlusion occurs. The other scene
is shown in figure 3, where the tracked person subsequently
walks behind the three obstacles. The person is partially
occluded behind the two smaller obstacles and fully occluded
behind the largest obstacle. After leaving the full occlusion
the person walks the same way back.

The effect of the adapted sensor model is evaluated by
calculating in every time step the volume of the axis-aligned
bounding box around the current particle set and compare
the volume sizes of the adaptive and the non-adaptive obser-
vation model. The bounding box volume has advantages over
considering the average distance to a ground truth trajectory.
The latter one can be quite small, but the particles can still
be spread over a large space, whereas the bounding box
is only small, when the particles are concentrated around
a position. As depicted in figure 5 a clearly visible effect
can be seen. With an adaption of the expected number points
(images (a) and (c)), the particle set stays concentrated onthe
person, whereas the non-adaptive observation model diverges
in almost every pass, when entering a partial occlusion. This
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Fig. 5. Robustness against partial occlusions: Depicted isthe log of the volume of an axis-aligned bounding box containing the particle set in two different
scenes. Images (a) and (b) show the results of the first scene with (a) and without (b) occlusion adaption. As one can see, in case (a) the bounding box
volume stays small even when the person is partially occluded,whereas in case (b) the particles spread and the person is lost, resulting in large volumes
of the bounding box. The second scene shows similar results, depicted in images (c) with occlusion adaption and (d) withoutocclusion adaption.

step1 (11 cm) step2 (22 cm) step3 (33 cm) slant

avg (cm) 3.0 3.7 2.4 0.4
min (cm) −2.1 0.7 0.7 −3.5
max (cm) 13.8 9.0 4.6 6.8

delay 1 2 4 /

TABLE I

AVERAGE, MINIMAL , AND MAXIMAL HEIGHT DEVIATIONS AND DELAYS

AT DIFFERENT HEIGHTS IN THE LAST SCENE DEPICTED IN FIGURE6.

can be explained by the effect that most of the particles
receive similar weights using the non-adapting model, even
those around the person’s position, because there are fewer
laser returns from the person than expected. When the person
leaves the partial occlusion, the particles can concentrate
again on the person in some passes, so that the bounding
box volume decreases as shown in figure 5 (b) and (d).

Full occlusions are evaluated by comparing the scan
number when a full occlusion is detected, with the scan
number when the person actually is fully occluded. The latter
one is the scan in which for the first time no more laser beams
fall on the person. The end of a full occlusion analogously
is the scan in which for the first time laser beams fall on
the person again. A full occlusion is canceled if a particle
has at least300 points in its bounding box. If more than
one particle does so, then the one with the highest number
is selected. This results in a detection offset of±4 scans,
meaning that the full occlusion is detected four scans too
early up to four scans too late and a constant cancellation
offset between1 and4, depending on the actual scene.

C. Tracking in uneven environments

In this experiment, we tested our approach for height
adaption. As our observation model integrates the height of
the person, the particle filter can track the height differences
with a minor delay and a slight difference to the real height
of the ground truth trajectory.

Table I shows the average of the differences in height
between the trajectory and the actual object over10 runs.
Also shown is the delay of the trajectory when following
the person up or down the steps. E.g., the 4 means it took
4 complete turns before the trajectory reached the height of
step3±5 cm after the person was already on that step.

D. Interfering Person

As stated in section V-C, the observation model is mod-
ified by a triangular function to penalize particles that are
close to a person of different size. For an evaluation of this,
we let two persons (1.8 m and2 m) walk through the hall,
and tracked the smaller person. Their paths crossed twice.
The first time during a partial occlusion, where the tracked
person is farther away from the sensor than the taller person.
The second crossing occurs in non-occluded space. Two
configurations were tested: (1) Full observation model as
stated before, (2) observation model as before but without the
penalizing term. In each configuration two cases can occur:
(a) No particles or only a few shortly change to the wrong
person and the track is continued without much disturbance,
(b) the originally tracked person is lost and the other person
gets tracked.

Our results show that the height adaption has a great
advantage over the non-adaptive model. In particular, we
let the scene run25 times and determined in every run for
both crossings if the particles switched to the taller person
or not. In configuration (1) in only four cases the particles
switched to the taller person during the first crossing. In the
other21 cases the particles stayed with the originally tracked
person. During the second crossing the particles stayed on
the previously tracked person in all25 cases. During the
first crossing for a short time the smaller person is nearly
fully occluded by the taller person, which is not modeled
and therefore leads to a spreading of the particles. Then,
some particles are close to the taller person and receive a
similar weight as the particles close to the smaller person,
but due to the penalization this weight is reduced for particles
near the taller person and so, during resampling, the particles
get concentrated around the smaller person again. In the four
exceptional cases too many particles were moved to the taller
person. However, in configuration (2) the particles switched
to the taller person in all25 cases during the first crossing,
while during the second crossing the particles remained on
the taller person in every case.

VII. C ONCLUSION AND FUTURE WORK

We presented an approach for tracking people using 3d
laser range data with an adaptive observation model. Using
this observation model, our approach is able to track a



Fig. 6. Experimental setups. In top figure a setup without any occlusion is
shown, the middle image depicts a scene with two partial occlusions and a
full occlusion, and the bottom shows a trajectory in a non-flat environment.
The reference trajectory is shown in light blue and the estimated trajectory
of our approach is shown in red.

person even in situations with significant partial occlusions.
Furthermore, we proposed a robust and efficient way of
resolving full occlusions, when the target person is com-
pletely occluded by an obstacle. In those situations, our
approach uniformly distributes the particles at the occlusion
boundaries of the occluding obstacles, and thus the track
can be continued in a controlled way. To accelerate the local
evaluation of the occlusion we used a regular grid of voxels
and an efficient ray tracing algorithm.

A challenging aim for future work is the reliable tracking
of multiple targets with mutual occlusions using a moving
platform. Another interesting avenue is the extension of the
observation model to capture more characteristics of humans,
and further exploit the appearance of people in 3d laser range
data. This could be used to distinguish persons from one
another and in turn enhance the data association in the multi-
person tracking scenario.

VIII. ACKNOWLEDGMENTS

We want to thank Achim K̈onigs, Frank Ḧoller, Timo
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