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Abstract— This paper presents an approach to exploit the
richer information of sensor data provided by 3d laser
rangefinders for the purpose of person tracking. Introduced
is a method to adapt the observation model of a particle filter,
to identify partial and full occlusions of a person, to determine
the amount of occlusion behind an obstacle, and the occluding
obstacle itself. This is done by tracing rays from positions near
the person to the sensor and determining whether the ray hits
an obstacle. The laser range data is represented using a voxel
grid, which facilitates efficient retrieval and data reduction. As
our experiments show, our proposed tracking approach is able
to reliably keep track of a person in real-time, even when only
partially visible, when moving in uneven terrain, or when the
person passes closely another person of different size.

I. INTRODUCTION

Person tracking is a key technology not only for au{:
tonomous systems operating in populated environments, bt
it can also be used in various other fields of application. Far=
instance, driver assistance systems could detect andagstim
future positions of pedestrians and issue a warning or evei.
actively perform maneuver corrections. Also, for service. ) ) .

e ig. 1. The tracking approach using 3d laser range scansffieretit
robots it is indispensable to detect, track and react to Im'""mascenarios. The upper figure shows a scene with partial doolusy a
in their vicinity. Furthermore, surveillance systems fobfic  detected obstacle (orange). The observation model is atlagtordingly.
places, museums, etc. can be thought of, based on a trackiTrﬁ‘Q lower figure depicts the estimated trajectory in an unevetronment.
system. In order to avoid collisions with humans in populate
environments simple collision avoidance algorithms may be This work focuses on three aspects of the observation
sufficient to trigger emergency breaks as humans are ddtectaodel of the patrticle filter: (1) By means of a novel occlusion
in the immediate vicinity of the robot. However, a robustdetection based on ray tracing we can explicitly detect when
tracking system provides the whole path of people and robodsperson is occluded, to what extent it is occluded, and tetec
can incorporate this additional information in their glbbathe occluding obstacles. This knowledge is used to adapt the
motion planning. This enables a dynamic and more efficiemtbservation model in situations of partial or full occlusso
path replanning without stopping. (2) By the use of a penalizing term we can distinguish the

In this paper, we present a robust, particle filter basewlacked person from another person of different size and
tracking system that uses 3d range data from a 3d laseontinue the track without much confusion, even if both
rangefinder instead of 2d range data. Two-dimensional laseersons occlude each other. (3) Based on a three-dimehsiona
range data represent only a slice of the environment. Thisotion model in combination with the observation model we
reduced perspective on things has the effect that relevatdan track people in uneven terrain.
objects, esp. the tracked target, and irrelevant objectdea  The paper is organized as follows. In section Il we briefly
erroneously confused. The used 3d laser range data in aummarize related work. Then, in section Ill, a general
approach offers far more comprehensive information so thaterview outlines the basic ideas of our tracking approach.
the whole body of a person can be detected, which leads toTae upfollowing sections describe the main parts in more
better discrimination between relevant and irrelevanecdtsj detail and present our adaptive observation model. Sgartin
and a better data association based thereon. with section 1V, we introduce the underlying data structure

which is the foundation of our adaptive observation model.
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Il. RELATED WORK geometric structure of the robot’s environment is perakive

Over the years several tracking approaches were propos@%fj can be utilized during tracking. Hoyvever, this advaatag
using particle filters and 2d laser range sensors. HowevéQmes at the expense of a vastly increased number of
recently more and more approaches also use 3d laser raﬁ@@wdual range measurements per second that needs to be
data to improve person detection and object tracking. TH¥0cessed online. For this purpose our approach maintains a
main disadvantages of using a 2d laserscanner are the fixgégular grid of voxels to store the 3d points corresponding t
height of the sensor and that only a slice of the environme#t€ measurements and also to estimate the occupancy state
is observable. A common practice is to mount the laserscafif regions in the environment. In comparisontié-trees (8]
ner in the height of a person’s tibia, such that the movemen@§ octrees [9], which are frequently used in 3d mapping for
of the legs can be detected. But this may lead to a loss of tH¥S Purpose, the grid-based representation allows tatinse
tracked person in uneven terrain or the confusion of differe @nd query laser points in constant time.
persons. Based on the voxel grid, our approach maintains a particle

3d laser rangefinders can be applied to overcome thelilter to track individual objects. In our current implemant
shortcomings, as shown by the following approacheéi.on we assume that the person’s dynamics is governed by
Navarro-Sermenet al.[1], [2] used 3d laser range data to@ simple three dimensional constant velocity model, itee. t
improve the robustness of a 2d tracker by a 3d detection Bgrson’s state at time is described by the 6-dimensional
humans, and extracting a so-called virtual scan slice fro¥fCtor x¢ = (z,y, 2, vz, vy, vz )i, Wherep, = (z,y,2);
the 3d laser range data using an elevation map. A simil§€notes the position and; = (v;, vy, v.); the velocity of
approach was applied by Petrovskaya and Thrun [3] to tradRe person at time. The particle filter represents‘the person’s
vehicles. They also extracted a virtual 2d scan from the Zfate density by a set of weighted sampies= {s"}1<i<n,
data which allows them to use an existing 2d particle filters; = (x{”,w"). Based on the constant velocity model, the
based tracker to track vehicles. But these approaches s@rediction step of the particle filter is implemented as
cannot handle occlusions properly. i i i

Recently some approaclieéo toydetect people in 3d laser (x’y’z)g = (%y,z)g,)l * (vmvy,vz)gfl. (1)
scans were proposed. Mozesal.[4] used multiple 2d laser The predicted velocity of a position hypothesis is updated
scanners mounted in different fixed heights to detect thgccording to
legs, the upper body and the head of people in cluttered ) (i)
environments using an AdaBoost-based classification,whic (Vas Uy, 02)y " = (Vay Uy, 02)y 21 + (€a, €y €2) (2)
leads to better tracking results even during occlusiongh@n wheree, ~ N(0,02), €, ~ N(O,o?/), ande. ~ N(0,02)

other hand one is constrained to persons of specific measuggs normally distributed noise terms that allow to adapt to
because of the fixed mounting heights. Spineli@l.[5] also velocity changes of the person.

used AdaBoost to learn a model of humans, but they usedhe position estimate of the particle filter is the weighted
actual 3d laser range scans from a Velodyne HDL 64-E 'asﬁ(/erage position of the particles,
range scanner.

Several approaches were proposed to handle occlusions . N G () 3
explicitly. In the approach of Arrast al.[6], a multi- Pt = Zwt Pi ®)
hypothesis leg tracker was presented, which explicitly mod =t
els occlusions. Besides the usual labels of a traeitection ~ The main innovation of our tracking approach lies in the
and deletion) a third label for occlusion of tracks was design and the evaluation of the probabilistic observation
introduced. Due to the tracking of separate legs this algpodel P(z|x{”) used to update the particle filter based on
includes self-occlusions by moving legs. Using this apphoa the voxel grid computed from the 3d laser range scans. In the
a significant reduction of false-positive initializationsf —subsequent sections, we will describe this observationeinod
tracks was achieved. Taylor and Kleeman [7] handled selfa detail; we will explain how occupied voxels originating
occlusions by a geometric model of the person. The scdfPm a moving person can be extracted fast, how partial and
shadow in respect to the front and rear leg indicates whéHll occlusions can be taken into account, and also how size
it is more likely to detect both legs. In contrast to thesénformation about the person being tracked can be utilized
approaches, we do not need to rely only on moving legs iduring tracking.
the sensor data stream or have to analyze the self occlusiorAs the focus of this work is on this observation model,
of the legs. We can take the whole body of the person &€ restricted our current implementation to tracking singl
an observation and modify our observation model to accouabjects from a stationary platform. However, in conjunectio
for partial and full occlusions. To the best of our knowledgewith an appropriate data association algorithm it should be
this is the first work on explicit occlusion handling in 3deasily generalizable to tracking multiple objects, eqa8d
laser range data. version of the SJIPDAF approach [10].

IIl. THE OVERALL TRACKING APPROACH IV. REPRESENTATION OF THEENVIRONMENT

The use of 3d laser range data for person tracking hasAs mentioned before, we represent the environment by
the huge advantage that the full information about the 3d regular grid of voxels, which is centered at the sensor’s



position. A voxel is denoted by; ; ., wherei, j, and k
are the indices of that voxel in the three-dimensional grid. B &
From the Cartesian coordinatés, y, z) of a laser point in !
the local frame of the laser range sensor, the indices of the
surrounding voxel are given by= |xp~1|, j = |yp~!],
andk = |zp~!], respectively, where is the side length of

a voxel.

The grid is furthermore used as a basis for a thregweight & \
dimensional extension of the well-known 2d occupancy grid
map [11]. For the occupancy update, every voxel is visited
and its occupancy valué(occupied, ;) is increased as
laser beams end in that voxel, i.e., the end points of the beam
are inside the voxel. On the other hand it is decreased if no
laser beam ends in that voxel. So we are using an "end point —D || (z,y,2)"
occupancy” instead of a "beam occupancy”, which would - ﬁe‘
also increase or decrease the occupancy of voxels along the
laser beam [11]. The occupied voxels are later used to ocall radius
determine occlusions explicitly, as needed. As we will see,

; i i i~ i Fig. 2. Bounding box (red) at a given particle position, y,z)gi) with
IocaIIy CalCU|atmg the occlusions is far more efficient i 3 radiusr and heighth. As the person is partially occluded by an obstacle

laser range scans than implicitly determining them as in thgy some laser beams are reflected by the person. Occupiets \(bkee)

"beam occupancy” model usually employed when 2d laséy obstacles and also voxels in front of obstacles (yellaw)®t included in
range scans are used. the bounding box and are therefore not taken into accourthéoocclusion

. . . ._.calculation or the point count. (Best viewed in color.)
Instead of creating a new grid for every scan, we maintain

only a single grid and update it in every iteration. Furtherparticle gets the highest weight, if there are as many points
more we store lists of voxels containing laser points that anear it as expected and lower weights otherwise. This number
occupied, or are occluded by an obstacle, respectivelngJsiis determined by counting the points in a bounding box
these lists only a fraction of all voxels must be traversed taround the particles position which is defined as
re-initialize and update the grid as a new scan is available. ,

As we will see later, by using these lists as well as the Br((z,y,2)i", h) = {vi i |[i — [zp7 ]| <r A (5)
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efficient Digital Differential Algorithm (DDA) ray tracing ’j - Lyfl“ <r A (6)
algorithm [12], [13], a complete iteration — insertion of 0<k— sz_lJ <n}, @)
laser points, occupancy update, occlusion calculatiors an - -

the particle filter update — can be done in real-time. whereh is the height of the box and its radius. Figure 2

The patrticle filter is initialized at positions, where dynam sketches the bounding box in the voxel grid. As the person
ics are detected, since we currently assume that only persanoves behind obstacles, some of the voxel can be occupied,
move in the environment. The basis for this person detectiand some are also in front of the obstacle. These voxels are
is the aforementioned occupancy voxel grid. Its underlyingot included in the bounding box, since these voxels are very
idea is as follows: The occupancy grid map captures thestatikely to not contain laser end points of the person. Esplgcia
structures in the environment. If there is a moving entigy thwhen calculating the occlusion these voxels would cause an
subset of the 3d point cloud that represents the person damsrestimated amount of non-occluded voxels.
not cause any voxel to be occupied. Thus, if we take all Since we want to track people in natural environments
voxels that contain points but are not marked as occupiedsing a 3d laser range scanner, we have to handle differ-
we get an initial hypothesis for the position of a person. Duent types of occlusions: partial and full occlusions. In the
to the noise in the laser range measurements, we have to pimdiowing, we will use occluded; ;; and —occluded; ; ;. to
process the results of this approach. Currently, we analeze distinguish voxelsy; ; . that are occluded or non-occluded,
number of connected hypothesis voxels and apply a threshakespectively. Figure 3 shows the results in a scene witligbart
on that number to filter false positive detections. and full occlusions.

V. ADAPTIVE OBSERVATION MODEL A. Partial Occlusions

The observation modeP(z, | i) expects at any time  As a person enters some space of the environment that
step a certain number of pointsthat fall on the person. is partially occluded by an obstacle, the number of points
To weight the particles, we assume this number is normaliat fall on the person decreases. Thus, the aforementioned
distributed, hence, observation model assigns similar weights to all particles

P(Zt‘l}(gi)) :N(zt; z 0;)’ 4) z;nd a divergence of the particles_ occurs. To e_lvoid Fhis
ehavior and to get an accurate position estimate in plgrtial
where z; is the number of points near a particle,is the occluded spaces, we explicitly account for this and adapt
expected number of points and the variance. This way, a accordingly.



@) (b) © (d)

Fig. 3. Results with partial and full occlusions. The persaiks around obstacles of different heights. The sensor hafdée particle filter is adapted
in the case of partial occlusions and the occluding obssaate identified. As the person moves behind the first obstac{a)ithe expected amount of
laser points is decreased according to the amount of occludeels behind the obstacle. The same happens behind thedsebstacle in (b), where
the particles are visible and show a concentrated shapenduritie person. As the person steps behind the largest abstaét), the full occlusion is

detected and the particles are uniformly distributed at tt&usion boundaries of the obstacles. When the person leheefull occlusion the particles
are concentrated again on the person, as depicted in (d)hanasual tracking is continued.

First, we determine the occlusion ratiofor a particle po- greater than a certain threshold, then we are apparently in a
sition (z, y, z)!" using the bounding bos,((z,y, z)\", h),  state of full occlusion.
which is defined as follows: As the tracked target enters full occlusion, indicated by
(i) w > 0.9, we uniformly distribute the particles at the
o Hoecludedi,j,k ‘vm‘vk € Br((z,y,2); ", h) H ®) boundary of the shadowed area behind the obstacle(s) which
BT((a:,y,z)Ei), h)’ occlude(s) the person. The set of boundgry voxels,. in the
same height: as the voxel; ; ;, at the estimated position
Hence,w is the amount of occluded voxels divided by, is determined by region growing. As before, we calculate
the number of voxels in a bounding box at the particléhe occlusion for every voxel by tracing the ray starting at
position that are not occupied and not in front of an obstacl&e current voxel, which ends at the sensor. Now two cases
Intuitively, as the amount of occluded voxels increases, thcan occur:
expected number of laser points on the person decreases]) The voxel is occluded by an obstacle, then we proceed

This principle is now integrated in the observation model, to extend the region by growing to neighboring voxels
which changes the observation modg(z, |x§z)) to that were not visited before.
) B 5 2) The voxel is not occluded by any obstacle, then we
P(z]z”) ~ N (2 (1-w)z, 1-w)oz).  (9) add the voxel to the boundary voxels.
To determine the occluded voxels insiig((z, , 2)\”, h) Now we can uniformly distribute the particles among

for a given particle position, we trace for each voxel ithe boundary voxels, and evaluate for every particle the
the bounding box a ray to the sensor. As the ray hits gbservation model in subsequent iterations without applyi
voxel that is occupied, i.e.P (occupiedi7j’k) > 0.5, the the m_otion model (<_:f. _fig. 3 (c)). Particles at the_boun_darly ge
voxel and the traversed voxels are marked as occluded. O§locity vectors pointing away from the occlusion, since we
locally evaluating the occlusion and reusing the resutisnfr ¢an expect that the person will walk away from the obstacle.
previous calculations turned out to be far more efficien N magnitude of a velocity vector is sampled from the last
than calculating the occlusion at every time step for th¥elocity magnitudes from the particles. As we detect, that t
complete grid. Even though we have to calculate this foP€rson leaves the occlusion, i.e., there are at lg@siaser

all particles individually. However, in the common casee th Points in the bounding box around the particle, the particle
particles are concentrated around the position of the achckfilter is re-initialized at the position with maximal confiuee,
person, the overlap of the bounding boxes of the particld<-, the particle that "sees” the most laser points. Altbgg

is obviously significant and can be exploited by re-usindhe track is continued using the motion model again after the
already computed voxel occlusions. person has left the occluded space.

B. Full Occlusions C. Person Height

If full occlusions were not modelled explicitly, the parti- In order to distinguish a tracked person from persons of
cles would spread out over the entire environment (in evewjifferent size and to enable a tracking in uneven terrain, we
iteration no correction using an observation could be madejpdate a size value for the tracked person. In every scan,
and the person, after leaving the occlusion, could only bi@ which the person is partially or fully visible, we take the
redetected by chance. A common and trivial solution is tourrent estimated positigh;, and determine the height of the
end the track when all particles get the same weights dyeerson. Starting from the voxel @ we search for the last
to missing detections. However, using the above definagxel in k-direction in the open bounding box that contains
occlusion ratiow, we can deduce full occlusions —df is  points and take the z-coordinate of that point as the top of



the person. The size is then determined by the difference 200 T runtime per teration —— | °°

between that z-coordinate and the z-coordinatgpof The 180 avgerage error - -

overall size value is then the average size over all scans, in 122 \ 04

which the person has been tracked,  120) s E

1 fzc € 00 %
hi4, = ——— Iy (10) £ w h\ 02 2
ts —te+1 = 60

wheret, is the number of the first tracked scan,is the :2 | 0

current scan and, is the guessed size in scanTo weight o [ 0

the particles according to the mismatch in height to 0.1 0.15 0.2 025 03

the average height; ..., we use the following observation grid resolution (m)

model . . T
Fig. 4. Runtime of an iteration in milliseconds and averageigsy of the

P(z l.(i) ~ 2 (1 — )z (1 — w)o2 11 estimated trajectory using different grid resolutions. Bhare the needed
( t| ¢ ) N( b ( ) ’ ( ) Z) (1) times for occupancy update, occlusion calculations andrathkulations
A (hyp, — heyT) (12)  with less impact on the run time. (Best viewed in color.)

where A(a,b) denotes the triangle function, defined agapprox.30%), which needs to trace a ray for every voxel

follows: in the bounding box. The influence of the occlusion update
A 1—lab™t| ,la| < |b] decreases with greater voxel sizes. The blue horizongitin
(a,b) = 0 , otherwise. 13) figure 4 depicts the time between two consecutive 3d laser

. . - . . ran ns, thus w n pr n h rticl
With this additional term non-matching heights are pena-.a ge scans, thus we ca process a d update the particle
: : . I . filter using a complete turn in real-time with = 0.1 m.
ized. As we will see, this stabilizes the tracking resulfs, i 0 . )
. i ) . Also visible is a decrease in the accuracy as the grid resolu-
persons of different sizes are observable in the envirobmen =~ ~. . e
T o : . tion increases. In turn, the depicted standard deviatien al
Furthermore, tracking in uneven terrain is possible, since S . . .
. o o . Increases, which is also visually observable in the esdthat
particle positions beneath the real position are also prathl : . .
. . . ... trajectories. Hence, we decided to yse= 0.125m for all
which leads to an adaption of the z-coordinate of the pasitio : S . .
vector experiments in this rest of this section.

V]. EXPERIMENTAL EVALUATION B. Partial and full occlusions

We implemented the proposed tracking system in C++ and TO evaluate the robustness of our approach against partial
conducted several experiments for the tracking of a singRnd full occlusions, we placed three different obstacles in
person in static indoor environments and with a stationar%'e hall with heights ofl m, 1.2 m, and2 m, respectively.
sensor. We used a Velodyne HDL-64E laser scanner mounté© obstacle configurations were tested. In the first sceme th
on a tripod in the center of a hall. The Velodyne laser scannéPstacles are placed side by side with small gaps between
was rotating with a speed & Hz, so that approx144.000 them and the person walks behind every obstacle (cf. figure
points per turn were recorded. We used a computer with £h middle). As introduced in section V-B our approach
Intel Xeon x5550 CPU with 2.67 GHz using a single coréiniformly distributes the particles at the visibility balaries
and 12 GB main memory. of the obstacle, when a full occlusion occurs. The otherescen

We set the voxel size tp = 0.125m, since this gave is shown in figure 3, where the tracked person subsequently
the best tradeoff between visual results of the estimate¥lks behind the three obstacles. The person is partially
trajectory and a reference trajectory. The grid had a lengfFcluded behind the two smaller obstacles and fully ocalude
and width of19m and a height of.5m. In all experiments, behind the largest obstacle. After leaving the full ocdusi

we used M = 500 particles and the expected numberthe person walks the same way back.
of points Z = 950 with standard deviatiorrz = 140 The effect of the adapted sensor model is evaluated by

was experimentally evaluated on a hold-out scene using t@lculating in every time step the volume of the axis-algjne
criteria minimal, average, and maximal error to a referendeounding box around the current particle set and compare

trajectory, and the number of lost tracks. the volume sizes of the adaptive and the non-adaptive obser-
] vation model. The bounding box volume has advantages over
A. Runtime considering the average distance to a ground truth trajecto

Figure 4 shows the runtime of the approach and th&he latter one can be quite small, but the particles can still
average accuracy of the estimated trajectory using differebe spread over a large space, whereas the bounding box
voxel sizesp. We tested the approach i) runs for every is only small, when the particles are concentrated around
voxel resolution. a position. As depicted in figure 5 a clearly visible effect

As we argued in section IV, the update of the occuean be seen. With an adaption of the expected number points
pancy, where we have to traverse all voxels to update thdimages (a) and (c)), the particle set stays concentratéldeon
occupancy, consumed the most time per iteration (approgerson, whereas the non-adaptive observation model @éiserg
40%). After this follows the computation of the occlusionin almost every pass, when entering a partial occlusiors Thi
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Fig. 5. Robustness against partial occlusions: Depictéukeisog of the volume of an axis-aligned bounding box contejrthe particle set in two different
scenes. Images (a) and (b) show the results of the first scehg@ayiand without (b) occlusion adaption. As one can seeagse ¢a) the bounding box
volume stays small even when the person is partially occludbereas in case (b) the particles spread and the persort,isdsslting in large volumes
of the bounding box. The second scene shows similar res@psctéd in images (c) with occlusion adaption and (d) withaetlusion adaption.

Volume of Bounding Box (log)

stepl (1 cm) step2%2cm) step3§3cm) slant D, Interfering Person

o g‘émg ey o 2 o As stated in section V-C, the observation model is mod-
max (cm) 13.8 9.0 16 6.8 ified by a triangular fl_mction to penalize particle; that are
delay 1 2 4 / close to a person of different size. For an evaluation of, this

we let two persons1(8 m and2 m) walk through the hall,
and tracked the smaller person. Their paths crossed twice.
The first time during a partial occlusion, where the tracked
person is farther away from the sensor than the taller person
can be explained by the effect that most of the particle-ghe.Seco.nd crossing OCCWS n non-occludeq space. Two
configurations were tested: (1) Full observation model as

receive similar weights u,slng th? non-adapting model, evesr{ated before, (2) observation model as before but withaut t
those around the person’s position, because there are fewer

enalizing term. In each configuration two cases can occur:
laser returns from the person than expected. When the per .
. . : a) No particles or only a few shortly change to the wrong
leaves the partial occlusion, the particles can concentra . . . :
. %erson and the track is continued without much disturbance,

bg the originally tracked person is lost and the other perso

TABLE |
AVERAGE, MINIMAL , AND MAXIMAL HEIGHT DEVIATIONS AND DELAYS
AT DIFFERENT HEIGHTS IN THE LAST SCENE DEPICTED IN FIGURB.

box volume decreases as shown in figure 5 (b) and (d). ots tracked

Full occlusions are evalgateq by comparir_lg the sca% Our results show that the height adaption has a great
number when a full occlusion 1S detected, with the SC8dvantage over the non-adaptive model. In particular, we
num_berwhen the person actual!y IS _fuIIy occluded. Theﬂattqet the scene rurz5 times and determined in every run for
?Tle 'S thhe scanin Wr]r'ﬁh for(;hefﬂrs]:t t;lme nlo more Iasler bearl'ﬂ)%th crossings if the particles switched to the taller perso
'a r?n the p(_arso?]: h ]? enh Of. atu oclc u3|okr)1 ana 0]9?'“3 br not. In configuration (1) in only four cases the particles
Itit € scan in w '; fo"r t el |r§t “T“e aserl deims at' Olgwitched to the taller person during the first crossing. & th

€ person again. Ul occlusion IS canceled 1t a partiCigyna o1 cases the particles stayed with the originally tracked

has at Ifa:SBgO pomtsﬂl]n |ti,hbound|ngthb(t)r:<. : T10ret thanbperson. During the second crossing the particles stayed on
one particie does so, then the one wi € highest numbfy previously tracked person in &b cases. During the
is selected. This results in a detection offsetdef scans,

) hat the full lusion is d df first crossing for a short time the smaller person is nearly
meaning that the full occlusion Is detected four scans tof&lly occluded by the taller person, which is not modeled

early up to four scans too Iatg and a constant cancellati%{hd therefore leads to a spreading of the particles. Then,
offset betweerl and4, depending on the actual scene. some particles are close to the taller person and receive a

similar weight as the particles close to the smaller person,
C. Tracking in uneven environments but due to the penalization this weight is reduced for plegic
near the taller person and so, during resampling, the pestic
In this experiment, we tested our approach for heighjet concentrated around the smaller person again. In thie fou
adaption. As our observation model integrates the height ekceptional cases too many particles were moved to the talle
the person, the particle filter can track the height diffee=n person. However, in configuration (2) the particles switthe
with a minor delay and a slight difference to the real heighfo the taller person in a5 cases during the first crossing,
of the ground truth trajectory. while during the second crossing the particles remained on
Table | shows the average of the differences in heigtihe taller person in every case.
between the trajectory and the actual object ougrruns.
Also shown is the delay of the trajectory when following
the person up or down the steps. E.g., the 4 means it tookWe presented an approach for tracking people using 3d
4 complete turns before the trajectory reached the height Gfser range data with an adaptive observation model. Using
step3+5cm after the person was already on that step.  this observation model, our approach is able to track a

VIl. CONCLUSION AND FUTURE WORK



Fig. 6. Experimental setups. In top figure a setup without axgjusion is
shown, the middle image depicts a scene with two partial omrigsand a
full occlusion, and the bottom shows a trajectory in a nohdfa/ironment.
The reference trajectory is shown in light blue and the es#@dh#&rajectory
of our approach is shown in red.

person even in situations with significant partial occlasio
Furthermore, we proposed a robust and efficient way of
resolving full occlusions, when the target person is com-
pletely occluded by an obstacle. In those situations, our
approach uniformly distributes the particles at the odolus
boundaries of the occluding obstacles, and thus the track
can be continued in a controlled way. To accelerate the local
evaluation of the occlusion we used a regular grid of voxels
and an efficient ray tracing algorithm.

A challenging aim for future work is the reliable tracking
of multiple targets with mutual occlusions using a moving
platform. Another interesting avenue is the extension ef th
observation model to capture more characteristics of hgman
and further exploit the appearance of people in 3d lasererang
data. This could be used to distinguish persons from one
another and in turn enhance the data association in the-multi
person tracking scenario.
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