Efficient Radius Neighbor Search in Three-dimensional PointClouds

Jens Behley, Volker Steinhage, and Armin B. Cremers

Abstract— Finding all neighbors of a point inside a given
radius is an integral part in many approaches using three-
dimensional laser range data. We present novel insights to sig-
nificantly improve the runtime performance of radius neighbor
search using octrees. Our contributions are as follows: (1) We
propose an index-based organization of the point cloud such
that we can efficiently store start and end indexes of points
inside every octant and (2) exploiting this representation, we can
use pruning of irrelevant subtrees in the traversal to facilitate
highly efficient radius neighbor search. We show significant
runtime improvements of our proposed octree representation
over state-of-the-art neighbor search implementations on thre
different urban datasets.

. INTRODUCTION

In this paper, we investigate radius neighbor search
three-dimensional point cloud® = {p,,...,py},p; € R?,
i.e.,, we are interested in finding all neighbors

N(g,;r)={peP|llp—qll <r}, @
inside an arbitrary radius € R of a query pointg € R3.

Such queries are a cornerstone of many components in laser-

Il. BACKGROUND

Before we discuss our contributions, we recapitulate the
commonly used recursive constructionleéf-basedoctrees
and the search for radius neighbors therein. Based on these
principles, we explain our improvements in the next section

A. Octree Construction

To accelerate the neighbor search in three-dimensional
point sets, a commonly used strategy is to use a regular
space partitioning — the octree. Starting with an axisrad)
bounding box with center € R? and equal extents € R,
which we calloctantin the following discussion (see also
Figure 1 (a)), we subdivide the octant recursively into senal
iBctants of exteng-e until an octant contains less than a given
number of points — théucket size. In each tree level, the
spatial subdivision partitions the poinf?; C P inside an
octantO into disjoint subset$®;, C Po,

Po =|JPr, st PinP; =0,i#j.
k

)

based perception approaches, such as feature computatiof an octant contains less thah points, we stop the
[1], [2] and normal estimation [3], [4]. Despite its impor- Subdivision and store a list of points contained in the leaf
tance, it is remarkable that there is virtually no progresgctant. Hence, a poinp; € P is inside the leaf octant

towards faster radius neighbor search in the last decade.

Most work concentrated on more efficient retrieval of
the nearest neighbor, either in high-dimensional data 5] o
metric spaces [6], investigated approximate nearest heigh

search [7], or exploited graphics processing units [

efficient implementations [11], [12] for large-scale da&tas

with centerc;, and extenty,, if and only if
) _

max|pl’) — ¢’ < ey, ©)
J

wherev’) denotes thg-th component of vectoo.

;) 8] fOr \we can determine the partition of points in relation to the
faster retrieval. In robotics, kD-trees [9] and octrees][10

are widely adopted to search for nearest neighbors in thregs; oo inO(d - N)
dimensional data and research concentrated on memo

centercp of octantO in linear time and therefore build an
, where N = |P| refers to the number of
B’dints andd is the tree depth. Since every point belongs
exactly to a single leaf octant)(N) additional space is

We propose improvements of octrees enabling faster radiHEeded to store the points inside the leaf octants.
neighbor search. A sparing representation of points inside

each octant is our main contribution. Exploiting this in-B. Nave Radius Neighbor Search in Octrees
formation, we propose to prune subtrees of the octree if Using the octree, we can retrieve all radius neighbors for

an octant is completely inside the query region. The earlyn arbitrary query poing € R? and radiusr € R with
pruning enables the addition of points to the result sekspect to a nornfj - ||, as follows.

without explicitly computing distancelp — g|| of points

Starting at the root, we traverse the octree recursively

p to queriesg, which improves the search time significantly.and investigate octants overlapping the search Béd,)
Our experimental results on urban point cloud datasetiefined by the query and radius-, since only these could

demonstrate the significant efficiency gains — fadtd to

potentially contain points that are also inside the desired

5.8 depending on the radius — over other publicly availablgeighborhood. When we reach an overlapping leaf octant,

nearest neighbor implementations supporting radius heigh

we check all pointsp inside the octant whether they are

search. Our proposed octree implementation is available &fso insideS(q,r), i.e., ||[p — q|| < r. All points inside

http://www.iai.uni-bonn.detbehley/octree.

J. Behley, V. Steinhage, and A. B. Cremers are with the Depattioie
Computer Science llI, University of Bonn, 53117 Bonn, Germany
{behl ey, st ei nhag, abc}@ ai . uni - bonn. de

the search ballS(gq,r) are also inside the set of radius
neighborsA/(g,r). Thus, we only need to compare points
inside overlapping leaf octants and consequently may disca
large subsets of points that are irrelevant for the query.

| A ° |_Oe — D o o E Algorithm 1: ImprovedradiusNeighbors
. ' % Input: OctantO, query pointg, radiusr, result setR
; o 09 0’\ o Result R contains all radius neighbor§(q,)
1P ” e 1if O is insideS(q,) then
c \) 2 Add all points insideO to R
o o DRI 1
3 return
o° ° o° ° 4 end
o B °c 5 if O is leaf octantthen
@ ®) 6 foreach point p inside O do
7 Add p to R if ||p — ¢|| < r holds
T g s end
(o & Vg o retumn
I“) o \“ L 10 end
o) N R s 1----- ‘ 11 foreach child octantC' of O do
H . . 12 if S(g,r) overlapsC: radiusNeighborgC, g, r, R)
o el 1 . 13 end
o [e) ——c—Al—r—
Fo o
© C) and therefore each point inside the octant must be also

inside of S(g,) due to the inclusion property (Equation 3).
Fig. 1. (a) Representation of an octant by its centand extent, i.e., half i
of the side length. (b) Starting at the root, octants oveilagp the search Consequently, we can §t0p the traversal. of the octreg m. a
ball S(q,r) (indicated by the dashed line) are visited. (c) Only poimts i SUbtree as soon as we find an octant that is completely inside

overlapping leaf nodes are tested for inclusionsify, r). (d) The overlap of S(q,r) and simply add all points inside the contained
test can be simplified if we exploit the axis-symmetry with resge the ctant to the result se&.

octants centee. We only need to consider two regions, shown in blue and0) . . .

green, to determine if an octant overlafq’,). We propose to extend theiwa radius neighbor search of

the last section by an inclusion check, which is performed
_ _before child octants are recursively investigated. If wel fin
Figure 1 (b) and (c) show an example query. In thig, octant that is contained ii(q, 7), we just add all points
example, octant and F can be ignored in the searchingide the octant without any computation of distances and
traversal, as they do not overlap with the search ball. siop the traversal in this subtreef (Algorithm 1). As we
To test whether an octant with centerand extente i see later, this subtle change in the tree traversal has
overlapsS(q,r), we can exploit the axis-symmetry of the gignificant impact on the radius neighbor search time.
octant with respect to its center. We transform the quergtpoi However, the described leaf-based implementation does
q into the local coordinate system of the octant, resulting ifo; facilitate this idea, since the information which psint
the transformed query poinf’ with ¢’V = |g\¥) — _c(j)|' are inside an octant is only stored in leaf octants. We could
The transformed search bafl(g’,) now overlaps with the 5yely store a list of points in each octant of the search
octant if its midpointg’ lies either in the blue or green region e However, this would considerably increase the reguir
depicted in Figure 1 (d). _ . space to store the data structuretoN?2) instead ofO(V),
This directly results in the following two conditions \ynich is problematic if we have to deal with large datasets.
for the overlap test if the transformed query point fulfills We will now discuss how to efficiently store the points

/(7 .
max; ¢’V < e+ 7 and link every octant with the contained points with minimal

ming'?) < e (4) overhead in the representation of an octant, which is the
J foundation for the proposed pruning strategy to speedup the
lg" = 1-el| < (5) radius neighbor search. After this we will discuss an effitie

inclusion test to determine if an octant is inside the search

where1 is the vector(1,...,1)T containing only ones. L o .
() g ony méall S(q,r), which is the second contribution of this paper.

Equation 4 corresponds to the blue and Equation 5 to t
green region in Figure 1 (d). If one of these conditions h,old% Index-based Octree

the transformed search ball at least touches the giventoctan] o) o
As discussed earlier in Section I, each subdivision par-

lIl. I MPROVING THE RADIUS NEIGHBOR SEARCH titions the points inside an octant into disjoint subsefs (
In the leaf-based octree implementation, we always hawgquation 2). Each further subdivision again results inclig;
to traverse the tree until we reach a leaf octant and easlibsets of the points inside the parent octant. As long as we
point inside the leaf octant needs to be tested for inclusidteep points inside an octant together, we can reorder the
in the search balb(g,r). But when we take a closer look subsets arbitrarily in every level of the octree. This ihsig
at the example shown in Figure 1 (b), we can see that thig the key to a representation that enables us to link each
dashed search ball already completely contains ocant octant with the points inside it.

Algorithm 2: Octant creation wittcreateOctant
Input: octant centekep, extentep, start indexsp, end
index to, number of pointsM of 59
Result OctantO Py
1 Initialize octantO with co, eo, so, to, and Mo. 3 6
Let s, be the start index;;, the end index, andl,, the
number of points of thé:-th child.
3 Let ¢, be the child center and, = %eo its extent.
4 if Mo > b then D 5> E
5 Seti =sp andj =0 °
6 while j < My do ol 59
7
8
9

N

Determine Morton codé of p, 0,
if M, =0:5s,=1 3 6
if My > 0: succ(ty) =1 B
10 Updatet, =i and My = My + 1 b
11 Get next point index = succ(i) andj = j + 1 ()
12 end Fig. 2. Example for the update of the successor relation vaaitestructing
13 Let | be the Morton code of the last child octant. Fhe_ octree. Also shown is the link from the octant (squaréhéostart point
14 foreach k, whereM; > 0 do inside the fist

15 Cy = createOctan{(cg, ek, Sk, ti, M)

16 Updates; andt;, with new start/end of”,

17 if C} is first child then v x4y,

18 Update octant’s stary = s

19 else

20 Update last child’s enducc(t;) = si c

21 end . P
22 Update octant’s endp = ¢, and setl = & Vo Vi
23 end

24 end

25 return O Fig. 3. To check if an octant is completely inside the seard¢h$@g’,),

we only need to test whether the farthest octant cotngeis inside.

. . . directed edges between nodes that correspond to points. Als
Starting at the root, we subdivide the points into subse own is the link from the octant (square node) to the paint
and reorder them such that the points of each child octalhich links to the remaining points inside it.
are sequenced together. For this purpose, we use an array 0|1J
successorsucc, which is altered in the octree construction
such thatsucc(i) = n maps to the next poinp,, that is
inside an octant or the first point of the next child octante Th
successor relation represents a single-connected ligtrewh
we have random access to individual list items.

In our octree representation, each oct@ntstores its
centercp, its extentep, the indexessp andtp of the first

and last point inside it, and the number of poit, inside

nitially, all points p, are linked to the following point
p;.1 regardless of which octant they belong tog.,
succ(i) =i+ 1, shown in Figure 2 (a).

As long as an octant contains more tharpoints, we
subdivide the points into subsets corresponding to thel chil
octants. As now points with non-sequential indexes might
fall into the same octant, we have to update the successor
relation, which is depicted in Figure 2 (b). The solid links
¢] R TR are caused by Lines 6-12 of the algorithm and ensure that
it. To enumerate all points insid@, we start with indeXso oints of the child octants can be used in the recursive
and usesucc to access the remaining/o — 1 points. construction of the child octants. The dotted links areritese

Algorithm 2 summarizes the recursive creation of octantgfter creation of the child octants, which is necessary to
and update okucc. Lines 6-12 subdivide the points into gnsyre that we can iterate over all points usingc in the
subsets using Morton codes [13] to index the child OCta”E‘arent octant. First, we have to update the start of octdnt

and update the successors such that it can be used to @itialj jne 18. But also between the subsets of children. we have
the child octants. In line 15, the child octants are recelgiv g relink the points (see Line 20).

created, which might alter the start and end index of thelchil

octant due to changes in the successor relation. Therefoke, Inclusion test

we have to update the start and end index in Lines 18 and 22Since we augmented our octree with enough information

such that it points to the correct position in the successorso determine for each octant which points are inside it, we
Figure 2 shows an example for the relinking of the pointeow have to discuss how to efficiently determine if an octant

while building the octree. Here, we visualizedcc(i) as is completely inside a given search béllg,).

[— Octree =~ =— PCL =— FLANN =— ANN — nabo]

Freiburg Pittsburgh Wachtberg
T T T T T T T T frT 71 T T T

w 10 E 1.5 E 5 E
8
g 8 - 1.2 = 4+
= 6 - 09 | 3 -
T 4 _ 3 06— 1 21\ i
@
g o N = 0.3 — 1 =

Ll | | | Wl 1 | | | w1 | | |

firTT T T T T T T T frT 71 T T T
£ 60 4 60} . -
B=!
o 45 4 a5t .
g 30 — 30
5 L g |
5 15 F 15 -\¥

Ll | | | Wl 1 | | | w1 | | |

32 64 128 256 32 64 128 256 32 64 128 256
bucket size bucket size bucket size

Fig. 4. The upper row shows the complete search time for raddighhor queries with radius = 0.5 m depending on the bucket sizeand the lower
row shows the time needed to build the evaluated search trdermeptations depending on the bucket dize

TABLE |

A simple solution would be to check if every corney DATASET STATISTICS

of the octant is inside&5(q,), since every point inside the
cube spanned by the octant must be also insitig).

K | look h bl h Dataset No. of points Dimensions (in X, Y, z) [m]
When we take a closer look at the problem, we see that Freiburg 176950 078 175 5.2
we can again exploit the axis-symmetry of the octant and piyspurgh 100.000 121.0, 72,9 29.7
use the transformeg’ as earlier with the overlap test (see Wachtberg 131.807 97.0, 97.6, 5.1

also Figure 3). We can simplify the inclusion test by simply

checking ifvo = —e - 1 fulfills points a distance and therefore set a default value for point

(6) outside the radius. Thus, the query time is usually doméhate

by zeroing the whole result set. To allow a fairer comparison
Intuitively, if cornerw is insideS(q’,r) every other corner we modified the ANN and libnabo implementation to only
must be also insidé&(q’,7), since||lvy — q'|| > |lvi — q'||. report distances of points inside the query radius.

This results in an efficient test, which only needs a single We compiled all implementations with gcc 4.8.1 using
norm computation with the transformed query paifitand - O3 - mar ch=nati ve - DNDEBUG - UDEBUG to enable
only one comparison in contrast to the théweatest, which all compiler optimizations. All experiments were perfone
needs eight norm computations and comparisons. single-threaded using an Intel Xeon X5550 witl67 GHz.

g’ = wol| <r.

IV. EXPERIMENTAL EVALUATION A. Datasets

We compare our proposed octree implementation to pub- As the performance of the data structures naturally de-
licly available implementatiodsof kD-trees, libnabo [14], pends on the point cloud data, we evaluated them using
ANN [7], FLANN [15], and the octree offered by the Point real-world data generated by different sensor setups. Tste fi
Cloud Library (PCL) [16], where we used a resolution ofdataset was recorded at the Universityrodiburg, Germany,
0.01 for the PCL octree, but enabled it to dynamically gronmusing a SICK LMS laser rangefinder mounted on a pan-tilt
until the desired bucket sizeis reached. For all experiments, unit [17]. The second dataset was acquired at the Carnegie
we report the overall time needed to determine for each poiMellon University in Pittsburghwith a Jeep equipped with
in the point cloud the desired radius neighborhood. SICK laser scanners facing sideways [18]. The third dataset

The FLANN kD-tree and PCL octree implementations exwas recorded at the Fraunhofer FKIE Wachtberg Ger-
plicitly offer methods for radius neighbor search. With ANNmany, using a Velodyne HDL-64E S2 laser range scanner
and libnabo, we can only implicitly search vianearest mounted on an Opel Vectra [1]. A more detailed discussion
neighbor queries for radius neighbors by setting= N of the datasets can be found in [1] and we used always the
and the maximal radius of reported neighbors to our desirdilst scan from the available data Set$able | summarizes
radius ». However, both implementations report for &l statistics of the laser scans used in the experiments: the

1We used libnabo 1.0.4, ANN 1.1.2, FLANN 1.8.4, and PCL 1.7.1. 2The data can be downloaded at http://www.iai.uni-bonn.tehley/data/.

[— Octree =~ =— PCL =— FLANN =— ANN — nabo]

Freiburg Pittsburgh Wachtberg

T T T T T T T T

50
40
30
20
10

=N W e Ot

search time in s

[=>]

'S

[\

speedup factor

radius in m radius in m radius in m

Fig. 5. Search time and speedup depending on the radius ofthiesrneighborhood. The upper row shows the complete timeedetdperform a

radius neighbor search for every point in the dataset. Therdagow shows the speedup of the proposed octree in compagstire other search tree
implementations. The dashed black line indicates equal peace of the implementations. The dotted green line showsétfermance of our octree
implementation without pruning. In comparison to the other enmntations, our proposed octree implementation shows disagntispeedup.

number of points and the dimensiodsof an axis-aligned avoid copying the point data and just need to initialize and
bounding boxj.e., d¥) = max; p¥) — min, p{*’. modify the successors while building the octree. Further-
more, the update of the successors in each level is done in a

B. Bucket Size and Construction Time single pass over the relevant subset of points and only needs
The bucket size is an important parameter that must behe computation of Morton codes.

selected in advance. It influences the depth of the search)) .

tree and determines how many points have to be comparfd Radius Neighbor Search Time

with the query pointg in the leaf nodes. Figure 4 (upper We also evaluated the search time depending on the query

row) shows the radius neighbor search time foe= 0.5m radiusr, » € {0.1,0.2,...,2.0}, and all implementations

depending on the bucket sizec {2¢|2 < i < 8}. used a bucket sizé = 32 based on the earlier results.
Interestingly, all search tree implementations showed Rigure 5 shows the results of these experiments: the upper

similar behavior depending on the bucket size: (1) If we usew depicts the sum over the individual search times and

a bucket sizéh < 16, the search time increased significantlythe lower row shows the speedup, i.8.= Tx/Tours, OVer

as the tests in inner nodes dominated the final comparistime other implementationX’, where the dashed black line

in the leaf nodes, (2) using a bucket size in the rangiadicates equal performance.

32 < b < 64 resulted in similar minimal search times These results show that our octree implementation signifi-

for the given implementations, and (3) larger bucket sizesantly outperforms the other implementations also withkeoth

b > 64 increased the search time again, since this leads tadii. The advantage of the pruning strategy increases with

many comparisons in the leaf nodes and therefore lessens theger radii, since octants are more likely to be completely

computational advantage over simple linear search. We algwside the search ball. In comparison to the best other kB-tr

evaluated other radii, but the general influence of the uckanplementation, we can observe a speeduf.pf2.7 over

size on the search time was essentially the same. Hence, the different datasets. Especially in outdoor environment

fixed the bucket size tb = 32 for the following experiments. larger neighbor radii are often used for feature computatio
The lower row of Figure 4 shows the time needed tdo capture context of large-scale object classes such as car

construct the search trees depending on the bucket siteees, or buildings [1], [2].

Larger bucket sizes reduce the depth of the search treesTo show the impact of the early pruning strategy enabled

which consequently reduces also the number of nodes in thg the efficient inclusion test, we also show the time needed

tree. Thus, we can observe a reduction of the build time witWithout pruning (dotted green line in Figure 5). This compar

increasing bucket size. ison confirms our hypothesis that the proposed early pruning
Figure 4 also shows that the proposed index-based octreksubtrees improves the radius neighbors performance, up

representation clearly outperforms the other implementat to 1.7 speedup, in contrast to leaf-based octrees (dotted line),

in terms of search time and also build time. An explanatiowhich always have to descend to a leaf node and compare

for the significant difference in build time might be that wethe contained points to the query point.

V. RELATED WORK our index-based representation and the proposed pruning

Closely related to the (general) radius neighbor search §rategy. An interesting avenue would be to investigatgi t
the fixed-radius neighbor search problem. Here one kno Still true when searching for approximate radius neigabo
the query radius in advance and can therefore exploit thisand whether similar simple geometrical tests could be used
information in the construction of the data structure. losu O accelerate thé-nearest neighbor search using octrees.
settings, grid-based methods are quite effective for three Lastly, the overlap and inclusion tests are directly appli-
dimensional data, since they allow the point location inid gr Cable to octants with unequal extents, which enables the
cell in constant time with minimal overhead to investigatdnvestigation of more data-sensitive octree variants ¢batd
neighboring grid cells [19]. Such grid-based represeonati ePresent the data by a more balanced and smaller tree.

are often applied in GPU-based implementations of fixed-
radius neighbors. Bentlest al. [20], [21] discussed different
methods for fixed-radius neighbor search and pointed otit thé

VII. ACKNOWLEDGMENTS

Thanks to Marcell Missura, Florian S@ler, and Jenny
alfer for fruitful discussions and many corrections tolgar

the kD-tree is the most flexible and efficient data Str”CturSraﬁs of the paper.

for arbitrary dimensions. In contrast to their results, we
could show that (carefully implemented) octrees can be
significantly faster than kD-trees, like the FLANN, if we [1]
prune subtrees completely inside the search region.

As stated earlier, most work in three-dimensional neighbor,
search concentrated on nearest neighbor search. In this
context, Elsebergt al. [14] evaluated different implemen-)
tations of octrees and kD-trees for iterative closest [goint
(ICP) [22]. Hornunget al [11] proposed a probabilistic [4]
and memory-efficient implementation of octrees in context
of mapping applications. Elsebert al. [12] also reorder [5]
points to efficiently address points in their implementatio
of an octree, but use this only in leaf nodes and furthermoré®l
use multiple quicksort-like passes over the points in each
level to reorder the points. Compared to their approach, our?]
approach with a single pass over the points is certainlgfast

V1. CONCLUSION 8]

In this paper, we proposed an octree implementation that
significantly improves the radius neighbor search in threel®!
dimensional data. Cornerstone of this implementation is g,
elegant organization of the points enabling the storage of
indexes inside each octant and the efficient retrieval afitgoi [11]
inside every octant. The experimental evaluation showet th
our algorithmic improvements lead to a significant speedup2]
over other state-of-the-art implementations.

The mindful reader might have noticed that we never mades
any assumption about the distan¢e|| in the introduction
(Equation 1), the derivation of the overlap test (Equationg4l
4 and 5), or the inclusion test (Equation 6). Hence, we can
directly use every-norm instead of the standai, norm [15]
without any change in the radius neighbor procedure or trl?e]
construction of the octree.

In our current implementation, we are quite wasteful in17
terms of the memory usage of the octants, since this saves
computation of the center and extent while traversing thgg;
octree. Nevertheless, this relatively large size of ostanm-
pared to other implementation83(Bytes vs.8 Bytes [12])
might be cumbersome for larger three-dimensional datasé%g]
and could be improved by a more memory-efficient repregz0]
sentation [11], [12], which only stores the necessary dath a
computes other information while traversing the tree.

We furthermore investigated here only exact radius neighz2]
bor search and showed that this can be sped up using

[21]

REFERENCES

J. Behley, V. Steinhage, and A. B. Cremers, “PerformanceHist
togram Descriptors for the Classification of 3D Laser Ranggaln
Urban Environments,” ifCRA 2012, pp. 4391-4398.

X. Xiong, D. Munoz, J. A. Bagnell, and M. Hebert, “3-D Seen
Analysis via Sequenced Predictions over Points and Regiams
ICRA 2011, pp. 2609-2616.

N. J. Mitra and A. Nguyen, “Estimating Surface Normals ini$jo
Point Cloud Data,” inSCG 2003, pp. 322-328.

K. Klasing, D. Wollherr, and M. Buss, “A Clustering MetHofor
Efficient Segmentation of 3d Laser Data,” l@RA 2008, pp. 4043—
4048.

M. Muja and D. G. Lowe, “Scalable Nearest Neighbor Algbms for
High Dimensional Data, TPAMI, 2014.

T. Liu, A. W. Moore, K. Yang, and A. G. Gray, “An Investigah of
Practical Approximate Nearest Neighbor Algorithms,"NtPS 2004,
pp. 825-832.

S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and AW,
“An optimal algorithm for approximate nearest neighbor skiag in
fixed dimensions,JACM, vol. 45, no. 6, pp. 891-923, 1998.

F. Gieseke, J. Heinermann, C. Oancea, and C. Igel, “BlfférTrees:
Processing Massive Nearest Neighbor Queries on GPUSCNL,
2014, pp. 172-180.

J. L. Bentley, “Multidimensional binary search trees diser associa-
tive searching,'CACM, vol. 18, no. 9, pp. 509-517, 1975.

D. Meagher, “Geometric Modeling Using Octree EncodinGpmp.
Graph. and Image Procvol. 19, pp. 129-147, 1982.

A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and Bvr-
gard, “OctoMap: An Efficient Probabilistic 3D Mapping Franmak
Based on OctreesAURQ vol. 34, no. 3, pp. 189-206, 2013.

J. Elseberg, D. Borrmann, and Adishter, “One billion points in the
cloud — an octree for efficient processing of 3D laser sca@fRS
J. of Photogramm. and Rem. Sensl. 76, pp. 76—88, 2013.

G. M. Morton, “A Computer Oriented Geodetic Data Base aridew
Technique in File Sequencing,” IBM, Tech. Rep., 1966.

J. Elseberg, S. Magnenat, R. Siegwart, and Achter, “Comparison
of nearest-neighbor-search strategies and implementdtioesficient
shape registrationJOSER vol. 3, no. 1, pp. 2-12, 2012.

M. Muja and D. G. Lowe, “Fast Approximate Nearest Neigttwith
Automatic Algorithm Configuration,” iVISAPR 2009.

R. B. Rusu and S. Cousins, “3D is here: Point Cloud Lijpr@CL),”
in ICRA 2011.

B. Steder, G. Grisetti, and W. Burgard, “Robust Placedmition for
3D Range Data based on Point Features,JGRA 2010, pp. 1400—
1405.

D. Munoz, J. A. D. Bagnell, N. Vandapel, and M. Hebertof@extual
Classification with Functional Max-Margin Markov Networksn
CVPR 2009, pp. 975-982.

R. C. Hoetzlein, “Fast Fixed-Radius Nearest Neighbdnseractive
Million-Particle Fluids,” in GPU Tech. Conf.2014.

J. L. Bentley, “A Survey of Techniques for Fixed Radiusa¥
Neighbor Searching,” Stanford University, Tech. Rep.,8.97

J. L. Bentley and J. H. Friedman, “Data Structures for gkaBearch-
ing,” CSUR vol. 11, no. 4, pp. 397-409, 1979.

P. J. Besl and N. D. McKay, “A Method for Registration ofD8
Shapes, TPAM|, vol. 14, no. 2, pp. 239-256, 1992.

