
Efficient Radius Neighbor Search in Three-dimensional PointClouds

Jens Behley, Volker Steinhage, and Armin B. Cremers

Abstract— Finding all neighbors of a point inside a given
radius is an integral part in many approaches using three-
dimensional laser range data. We present novel insights to sig-
nificantly improve the runtime performance of radius neighbor
search using octrees. Our contributions are as follows: (1) We
propose an index-based organization of the point cloud such
that we can efficiently store start and end indexes of points
inside every octant and (2) exploiting this representation, we can
use pruning of irrelevant subtrees in the traversal to facilitate
highly efficient radius neighbor search. We show significant
runtime improvements of our proposed octree representation
over state-of-the-art neighbor search implementations on three
different urban datasets.

I. INTRODUCTION

In this paper, we investigate radius neighbor search in
three-dimensional point cloudsP = {p1, . . . ,pN},pi ∈ R

3,
i.e., we are interested in finding all neighbors

N (q, r) = {p ∈ P | ||p− q|| < r}, (1)

inside an arbitrary radiusr ∈ R of a query pointq ∈ R
3.

Such queries are a cornerstone of many components in laser-
based perception approaches, such as feature computation
[1], [2] and normal estimation [3], [4]. Despite its impor-
tance, it is remarkable that there is virtually no progress
towards faster radius neighbor search in the last decade.

Most work concentrated on more efficient retrieval of
the nearest neighbor, either in high-dimensional data [5] or
metric spaces [6], investigated approximate nearest neighbor
search [7], or exploited graphics processing units [8] for
faster retrieval. In robotics, kD-trees [9] and octrees [10]
are widely adopted to search for nearest neighbors in three-
dimensional data and research concentrated on memory-
efficient implementations [11], [12] for large-scale datasets.

We propose improvements of octrees enabling faster radius
neighbor search. A sparing representation of points inside
each octant is our main contribution. Exploiting this in-
formation, we propose to prune subtrees of the octree if
an octant is completely inside the query region. The early
pruning enables the addition of points to the result set
without explicitly computing distances||p − q|| of points
p to queriesq, which improves the search time significantly.
Our experimental results on urban point cloud datasets
demonstrate the significant efficiency gains – factor1.2 to
5.8 depending on the radius – over other publicly available
nearest neighbor implementations supporting radius neighbor
search. Our proposed octree implementation is available at
http://www.iai.uni-bonn.de/∼behley/octree.

J. Behley, V. Steinhage, and A. B. Cremers are with the Department of
Computer Science III, University of Bonn, 53117 Bonn, Germany.
{behley,steinhag,abc}@iai.uni-bonn.de

II. BACKGROUND

Before we discuss our contributions, we recapitulate the
commonly used recursive construction ofleaf-basedoctrees
and the search for radius neighbors therein. Based on these
principles, we explain our improvements in the next section.

A. Octree Construction

To accelerate the neighbor search in three-dimensional
point sets, a commonly used strategy is to use a regular
space partitioning – the octree. Starting with an axis-aligned
bounding box with centerc ∈ R

3 and equal extentse ∈ R,
which we calloctant in the following discussion (see also
Figure 1 (a)), we subdivide the octant recursively into smaller
octants of extent12 ·e until an octant contains less than a given
number of points – thebucket sizeb. In each tree level, the
spatial subdivision partitions the pointsPO ⊆ P inside an
octantO into disjoint subsetsPk ⊆ PO,

PO =
⋃

k

Pk, s.t.Pi ∩ Pj = ∅, i 6= j. (2)

If an octant contains less thanb points, we stop the
subdivision and store a list of points contained in the leaf
octant. Hence, a pointpi ∈ P is inside the leaf octantL
with centercL and extenteL, if and only if

max
j

|p
(j)
i − c

(j)
L | < eL, (3)

wherev(j) denotes thej-th component of vectorv.
We can determine the partition of points in relation to the

centercO of octantO in linear time and therefore build an
octree inO(d ·N), whereN = |P| refers to the number of
points andd is the tree depth. Since every point belongs
exactly to a single leaf octant,O(N) additional space is
needed to store the points inside the leaf octants.

B. Näıve Radius Neighbor Search in Octrees

Using the octree, we can retrieve all radius neighbors for
an arbitrary query pointq ∈ R

3 and radiusr ∈ R with
respect to a norm|| · ||, as follows.

Starting at the root, we traverse the octree recursively
and investigate octants overlapping the search ballS(q, r)
defined by the queryq and radiusr, since only these could
potentially contain points that are also inside the desired
neighborhood. When we reach an overlapping leaf octant,
we check all pointsp inside the octant whether they are
also insideS(q, r), i.e., ||p − q|| < r. All points inside
the search ballS(q, r) are also inside the set of radius
neighborsN (q, r). Thus, we only need to compare points
inside overlapping leaf octants and consequently may discard
large subsets of points that are irrelevant for the query.

A

(a)

B C

D E

(b)

F

H

R

T

S

(c) (d)

Fig. 1. (a) Representation of an octant by its centerc and extente, i.e., half
of the side length. (b) Starting at the root, octants overlapping the search
ball S(q, r) (indicated by the dashed line) are visited. (c) Only points in
overlapping leaf nodes are tested for inclusion inS(q, r). (d) The overlap
test can be simplified if we exploit the axis-symmetry with respect to the
octants centerc. We only need to consider two regions, shown in blue and
green, to determine if an octant overlapsS(q′, r).

Figure 1 (b) and (c) show an example query. In this
example, octantH and F can be ignored in the search
traversal, as they do not overlap with the search ball.

To test whether an octant with centerc and extente
overlapsS(q, r), we can exploit the axis-symmetry of the
octant with respect to its center. We transform the query point
q into the local coordinate system of the octant, resulting in
the transformed query pointq′ with q′(j) = |q(j) − c(j)|.
The transformed search ballS(q′, r) now overlaps with the
octant if its midpointq′ lies either in the blue or green region
depicted in Figure 1 (d).

This directly results in the following two conditions
for the overlap test if the transformed query point fulfills
maxj q

′(j) < e+ r:

min
j

q′(j) < e (4)

||q′ − 1 · e|| < r, (5)

where1 is the vector(1, . . . , 1)T containing only ones.
Equation 4 corresponds to the blue and Equation 5 to the

green region in Figure 1 (d). If one of these conditions holds,
the transformed search ball at least touches the given octant.

III. I MPROVING THE RADIUS NEIGHBOR SEARCH

In the leaf-based octree implementation, we always have
to traverse the tree until we reach a leaf octant and each
point inside the leaf octant needs to be tested for inclusion
in the search ballS(q, r). But when we take a closer look
at the example shown in Figure 1 (b), we can see that the
dashed search ball already completely contains octantE

Algorithm 1 : ImprovedradiusNeighbors
Input : OctantO, query pointq, radiusr, result setR
Result: R contains all radius neighborsN (q, r)
if O is insideS(q, r) then1

Add all points insideO to R2

return3

end4

if O is leaf octantthen5

foreach point p insideO do6

Add p to R if ||p− q|| < r holds7

end8

return9

end10

foreach child octantC of O do11

if S(q, r) overlapsC: radiusNeighbors(C, q, r, R)12

end13

and therefore each point inside the octant must be also
inside ofS(q, r) due to the inclusion property (Equation 3).
Consequently, we can stop the traversal of the octree in a
subtree as soon as we find an octant that is completely inside
of S(q, r) and simply add all points inside the contained
octant to the result setR.

We propose to extend the naı̈ve radius neighbor search of
the last section by an inclusion check, which is performed
before child octants are recursively investigated. If we find
an octant that is contained inS(q, r), we just add all points
inside the octant without any computation of distances and
stop the traversal in this subtree (cf . Algorithm 1). As we
will see later, this subtle change in the tree traversal has
significant impact on the radius neighbor search time.

However, the described leaf-based implementation does
not facilitate this idea, since the information which points
are inside an octant is only stored in leaf octants. We could
näıvely store a list of points in each octant of the search
tree. However, this would considerably increase the required
space to store the data structure toO(N2) instead ofO(N),
which is problematic if we have to deal with large datasets.

We will now discuss how to efficiently store the points
and link every octant with the contained points with minimal
overhead in the representation of an octant, which is the
foundation for the proposed pruning strategy to speedup the
radius neighbor search. After this we will discuss an efficient
inclusion test to determine if an octant is inside the search
ball S(q, r), which is the second contribution of this paper.

A. Index-based Octree

As discussed earlier in Section II, each subdivision par-
titions the points inside an octant into disjoint subsets (cf .
Equation 2). Each further subdivision again results in disjoint
subsets of the points inside the parent octant. As long as we
keep points inside an octant together, we can reorder the
subsets arbitrarily in every level of the octree. This insight
is the key to a representation that enables us to link each
octant with the points inside it.

Algorithm 2 : Octant creation withcreateOctant
Input : octant centercO, extenteO, start indexsO, end

index tO, number of pointsMO

Result: OctantO
Initialize octantO with cO, eO, sO, tO, andMO.1

Let sk be the start index,tk the end index, andMk the2

number of points of thek-th child.
Let ck be the child center andek = 1

2eO its extent.3

if MO > b then4

Set i = sO and j = 05

while j < MO do6

Determine Morton codek of pi7

if Mk = 0: sk = i8

if Mk > 0: succ(tk) = i9

Updatetk = i andMk = Mk + 110

Get next point indexi = succ(i) and j = j + 111

end12

Let l be the Morton code of the last child octant.13

foreach k, whereMk > 0 do14

Ck = createOctant(ck, ek, sk, tk, Mk)15

Updatesk and tk with new start/end ofCk16

if Ck is first child then17

Update octant’s startsO = sk18

else19

Update last child’s endsucc(tl) = sk20

end21

Update octant’s endtO = tk and setl = k22

end23

end24

return O25

Starting at the root, we subdivide the points into subsets
and reorder them such that the points of each child octant
are sequenced together. For this purpose, we use an array of
successorssucc, which is altered in the octree construction
such thatsucc(i) = n maps to the next pointpn that is
inside an octant or the first point of the next child octant. The
successor relation represents a single-connected list, where
we have random access to individual list items.

In our octree representation, each octantO stores its
centercO, its extenteO, the indexessO and tO of the first
and last point inside it, and the number of pointsMO inside
it. To enumerate all points insideO, we start with indexsO
and usesucc to access the remainingMO − 1 points.

Algorithm 2 summarizes the recursive creation of octants
and update ofsucc. Lines 6–12 subdivide the points into
subsets using Morton codes [13] to index the child octants
and update the successors such that it can be used to initialize
the child octants. In line 15, the child octants are recursively
created, which might alter the start and end index of the child
octant due to changes in the successor relation. Therefore,
we have to update the start and end index in Lines 18 and 22
such that it points to the correct position in the successors.

Figure 2 shows an example for the relinking of the points
while building the octree. Here, we visualizedsucc(i) as

4

1

3

5

6

2

A

432 5 6

A

1

(a)

4

1

3

5

6

2

B C

D E

4

A B

3

C

1 5

D E

2 6

(b)

Fig. 2. Example for the update of the successor relation whileconstructing
the octree. Also shown is the link from the octant (square) tothe start points
inside the list.

Fig. 3. To check if an octant is completely inside the search ball S(q′, r),
we only need to test whether the farthest octant cornerv0 is inside.

directed edges between nodes that correspond to points. Also
shown is the link from the octant (square node) to the points,
which links to the remaining points inside it.

Initially, all points pi are linked to the following point
pi+1 regardless of which octant they belong to,i.e.,
succ(i) = i+ 1, shown in Figure 2 (a).

As long as an octant contains more thanb points, we
subdivide the points into subsets corresponding to the child
octants. As now points with non-sequential indexes might
fall into the same octant, we have to update the successor
relation, which is depicted in Figure 2 (b). The solid links
are caused by Lines 6–12 of the algorithm and ensure that
points of the child octants can be used in the recursive
construction of the child octants. The dotted links are inserted
after creation of the child octants, which is necessary to
ensure that we can iterate over all points usingsucc in the
parent octant. First, we have to update the start of octantA in
Line 18. But also between the subsets of children, we have
to relink the points (see Line 20).

B. Inclusion test

Since we augmented our octree with enough information
to determine for each octant which points are inside it, we
now have to discuss how to efficiently determine if an octant
is completely inside a given search ballS(q, r).

Octree PCL FLANN ANN nabo

2

4

6

8

10

s
e
a
r
c
h
t
im

e
in

s
Freiburg

32 64 128 256

bucket size

15

30

45

60

b
u
il
d
t
im

e
in

m
s

0.3

0.6

0.9

1.2

1.5

Pittsburgh

32 64 128 256

bucket size

15

30

45

60

1

2

3

4

5

Wachtberg

32 64 128 256

bucket size

15

30

45

60

Fig. 4. The upper row shows the complete search time for radius neighbor queries with radiusr = 0.5m depending on the bucket sizeb and the lower
row shows the time needed to build the evaluated search tree implementations depending on the bucket sizeb.

A simple solution would be to check if every cornervi

of the octant is insideS(q, r), since every point inside the
cube spanned by the octant must be also insideS(q, r).

When we take a closer look at the problem, we see that
we can again exploit the axis-symmetry of the octant and
use the transformedq′ as earlier with the overlap test (see
also Figure 3). We can simplify the inclusion test by simply
checking ifv0 = −e · 1 fulfills

||q′ − v0|| < r. (6)

Intuitively, if cornerv0 is insideS(q′, r) every other corner
must be also insideS(q′, r), since||v0 − q′|| ≥ ||vi − q′||.

This results in an efficient test, which only needs a single
norm computation with the transformed query pointq′ and
only one comparison in contrast to the the naı̈ve test, which
needs eight norm computations and comparisons.

IV. EXPERIMENTAL EVALUATION

We compare our proposed octree implementation to pub-
licly available implementations1 of kD-trees, libnabo [14],
ANN [7], FLANN [15], and the octree offered by the Point
Cloud Library (PCL) [16], where we used a resolution of
0.01 for the PCL octree, but enabled it to dynamically grow
until the desired bucket sizeb is reached. For all experiments,
we report the overall time needed to determine for each point
in the point cloud the desired radius neighborhood.

The FLANN kD-tree and PCL octree implementations ex-
plicitly offer methods for radius neighbor search. With ANN
and libnabo, we can only implicitly search viak-nearest
neighbor queries for radius neighbors by settingk = N
and the maximal radius of reported neighbors to our desired
radius r. However, both implementations report for allk

1We used libnabo 1.0.4, ANN 1.1.2, FLANN 1.8.4, and PCL 1.7.1.

TABLE I

DATASET STATISTICS

Dataset No. of points Dimensions (in x, y, z) [m]

Freiburg 176.250 97.8, 47.8, 8.2
Pittsburgh 100.000 121.0, 72.9, 29.7
Wachtberg 131.807 97.0, 97.6, 5.1

points a distance and therefore set a default value for points
outside the radius. Thus, the query time is usually dominated
by zeroing the whole result set. To allow a fairer comparison,
we modified the ANN and libnabo implementation to only
report distances of points inside the query radius.

We compiled all implementations with gcc 4.8.1 using
-O3 -march=native -DNDEBUG -UDEBUG to enable
all compiler optimizations. All experiments were performed
single-threaded using an Intel Xeon X5550 with2.67 GHz.

A. Datasets

As the performance of the data structures naturally de-
pends on the point cloud data, we evaluated them using
real-world data generated by different sensor setups. The first
dataset was recorded at the University ofFreiburg, Germany,
using a SICK LMS laser rangefinder mounted on a pan-tilt
unit [17]. The second dataset was acquired at the Carnegie
Mellon University in Pittsburghwith a Jeep equipped with
SICK laser scanners facing sideways [18]. The third dataset
was recorded at the Fraunhofer FKIE inWachtberg, Ger-
many, using a Velodyne HDL-64E S2 laser range scanner
mounted on an Opel Vectra [1]. A more detailed discussion
of the datasets can be found in [1] and we used always the
first scan from the available data sets2. Table I summarizes
statistics of the laser scans used in the experiments: the

2The data can be downloaded at http://www.iai.uni-bonn.de/∼behley/data/.

Octree PCL FLANN ANN nabo

10

20

30

40

50

se
a
rc
h
ti
m
e
in

s
Freiburg

0.5 1.0 1.5

radius in m

2

4

6

sp
e
e
d
u
p
fa
c
to
r

1

2

3

4

5

Pittsburgh

0.5 1.0 1.5

radius in m

2

4

6

3

6

9

12

15

Wachtberg

0.5 1.0 1.5

radius in m

2

4

6

Fig. 5. Search time and speedup depending on the radius of the radius neighborhood. The upper row shows the complete time needed to perform a
radius neighbor search for every point in the dataset. The lower row shows the speedup of the proposed octree in comparisonto the other search tree
implementations. The dashed black line indicates equal performance of the implementations. The dotted green line shows the performance of our octree
implementation without pruning. In comparison to the other implementations, our proposed octree implementation shows a significant speedup.

number of points and the dimensionsd of an axis-aligned
bounding box,i.e., d(j) = maxi p

(j)
i −mini p

(j)
i .

B. Bucket Size and Construction Time

The bucket sizeb is an important parameter that must be
selected in advance. It influences the depth of the search
tree and determines how many points have to be compared
with the query pointq in the leaf nodes. Figure 4 (upper
row) shows the radius neighbor search time forr = 0.5m
depending on the bucket sizeb ∈ {2i|2 ≤ i ≤ 8}.

Interestingly, all search tree implementations showed a
similar behavior depending on the bucket size: (1) If we use
a bucket sizeb < 16, the search time increased significantly
as the tests in inner nodes dominated the final comparison
in the leaf nodes, (2) using a bucket size in the range
32 ≤ b ≤ 64 resulted in similar minimal search times
for the given implementations, and (3) larger bucket sizes
b > 64 increased the search time again, since this leads to
many comparisons in the leaf nodes and therefore lessens the
computational advantage over simple linear search. We also
evaluated other radii, but the general influence of the bucket
size on the search time was essentially the same. Hence, we
fixed the bucket size tob = 32 for the following experiments.

The lower row of Figure 4 shows the time needed to
construct the search trees depending on the bucket size.
Larger bucket sizes reduce the depth of the search trees,
which consequently reduces also the number of nodes in the
tree. Thus, we can observe a reduction of the build time with
increasing bucket size.

Figure 4 also shows that the proposed index-based octree
representation clearly outperforms the other implementations
in terms of search time and also build time. An explanation
for the significant difference in build time might be that we

avoid copying the point data and just need to initialize and
modify the successors while building the octree. Further-
more, the update of the successors in each level is done in a
single pass over the relevant subset of points and only needs
the computation of Morton codes.

C. Radius Neighbor Search Time

We also evaluated the search time depending on the query
radius r, r ∈ {0.1, 0.2, . . . , 2.0}, and all implementations
used a bucket sizeb = 32 based on the earlier results.
Figure 5 shows the results of these experiments: the upper
row depicts the sum over the individual search times and
the lower row shows the speedup, i.e.,S = TX/Tours, over
the other implementationsX, where the dashed black line
indicates equal performance.

These results show that our octree implementation signifi-
cantly outperforms the other implementations also with other
radii. The advantage of the pruning strategy increases with
larger radii, since octants are more likely to be completely
inside the search ball. In comparison to the best other kD-tree
implementation, we can observe a speedup of1.2–2.7 over
the different datasets. Especially in outdoor environments,
larger neighbor radii are often used for feature computation
to capture context of large-scale object classes such as cars,
trees, or buildings [1], [2].

To show the impact of the early pruning strategy enabled
by the efficient inclusion test, we also show the time needed
without pruning (dotted green line in Figure 5). This compar-
ison confirms our hypothesis that the proposed early pruning
of subtrees improves the radius neighbors performance, up
to 1.7 speedup, in contrast to leaf-based octrees (dotted line),
which always have to descend to a leaf node and compare
the contained points to the query point.

V. RELATED WORK

Closely related to the (general) radius neighbor search is
the fixed-radius neighbor search problem. Here one knows
the query radiusr in advance and can therefore exploit this
information in the construction of the data structure. In such
settings, grid-based methods are quite effective for three-
dimensional data, since they allow the point location in a grid
cell in constant time with minimal overhead to investigate
neighboring grid cells [19]. Such grid-based representations
are often applied in GPU-based implementations of fixed-
radius neighbors. Bentleyet al. [20], [21] discussed different
methods for fixed-radius neighbor search and pointed out that
the kD-tree is the most flexible and efficient data structure
for arbitrary dimensions. In contrast to their results, we
could show that (carefully implemented) octrees can be
significantly faster than kD-trees, like the FLANN, if we
prune subtrees completely inside the search region.

As stated earlier, most work in three-dimensional neighbor
search concentrated on nearest neighbor search. In this
context, Elseberget al. [14] evaluated different implemen-
tations of octrees and kD-trees for iterative closest points
(ICP) [22]. Hornunget al. [11] proposed a probabilistic
and memory-efficient implementation of octrees in context
of mapping applications. Elseberget al. [12] also reorder
points to efficiently address points in their implementation
of an octree, but use this only in leaf nodes and furthermore
use multiple quicksort-like passes over the points in each
level to reorder the points. Compared to their approach, our
approach with a single pass over the points is certainly faster.

VI. CONCLUSION

In this paper, we proposed an octree implementation that
significantly improves the radius neighbor search in three-
dimensional data. Cornerstone of this implementation is an
elegant organization of the points enabling the storage of
indexes inside each octant and the efficient retrieval of points
inside every octant. The experimental evaluation showed that
our algorithmic improvements lead to a significant speedup
over other state-of-the-art implementations.

The mindful reader might have noticed that we never made
any assumption about the distance|| · || in the introduction
(Equation 1), the derivation of the overlap test (Equations
4 and 5), or the inclusion test (Equation 6). Hence, we can
directly use everyp-norm instead of the standardL2 norm
without any change in the radius neighbor procedure or the
construction of the octree.

In our current implementation, we are quite wasteful in
terms of the memory usage of the octants, since this saves
computation of the center and extent while traversing the
octree. Nevertheless, this relatively large size of octants com-
pared to other implementations (93 Bytes vs.8 Bytes [12])
might be cumbersome for larger three-dimensional datasets
and could be improved by a more memory-efficient repre-
sentation [11], [12], which only stores the necessary data and
computes other information while traversing the tree.

We furthermore investigated here only exact radius neigh-
bor search and showed that this can be sped up using

our index-based representation and the proposed pruning
strategy. An interesting avenue would be to investigate if this
is still true when searching for approximate radius neighbors
and whether similar simple geometrical tests could be used
to accelerate thek-nearest neighbor search using octrees.

Lastly, the overlap and inclusion tests are directly appli-
cable to octants with unequal extents, which enables the
investigation of more data-sensitive octree variants thatcould
represent the data by a more balanced and smaller tree.

VII. ACKNOWLEDGMENTS

Thanks to Marcell Missura, Florian Schöler, and Jenny
Balfer for fruitful discussions and many corrections to early
drafts of the paper.

REFERENCES

[1] J. Behley, V. Steinhage, and A. B. Cremers, “Performance ofHis-
togram Descriptors for the Classification of 3D Laser Range Data in
Urban Environments,” inICRA, 2012, pp. 4391–4398.

[2] X. Xiong, D. Munoz, J. A. Bagnell, and M. Hebert, “3-D Scene
Analysis via Sequenced Predictions over Points and Regions,” in
ICRA, 2011, pp. 2609–2616.

[3] N. J. Mitra and A. Nguyen, “Estimating Surface Normals in Noisy
Point Cloud Data,” inSCG, 2003, pp. 322–328.

[4] K. Klasing, D. Wollherr, and M. Buss, “A Clustering Method for
Efficient Segmentation of 3d Laser Data,” inICRA, 2008, pp. 4043–
4048.

[5] M. Muja and D. G. Lowe, “Scalable Nearest Neighbor Algorithms for
High Dimensional Data,”TPAMI, 2014.

[6] T. Liu, A. W. Moore, K. Yang, and A. G. Gray, “An Investigation of
Practical Approximate Nearest Neighbor Algorithms,” inNIPS, 2004,
pp. 825–832.

[7] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu,
“An optimal algorithm for approximate nearest neighbor searching in
fixed dimensions,”JACM, vol. 45, no. 6, pp. 891–923, 1998.

[8] F. Gieseke, J. Heinermann, C. Oancea, and C. Igel, “Bufferk-d Trees:
Processing Massive Nearest Neighbor Queries on GPUs,” inICML,
2014, pp. 172–180.

[9] J. L. Bentley, “Multidimensional binary search trees used for associa-
tive searching,”CACM, vol. 18, no. 9, pp. 509–517, 1975.

[10] D. Meagher, “Geometric Modeling Using Octree Encoding,” Comp.
Graph. and Image Proc., vol. 19, pp. 129–147, 1982.

[11] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W.Bur-
gard, “OctoMap: An Efficient Probabilistic 3D Mapping Framework
Based on Octrees,”AURO, vol. 34, no. 3, pp. 189–206, 2013.

[12] J. Elseberg, D. Borrmann, and A. Nüchter, “One billion points in the
cloud – an octree for efficient processing of 3D laser scans,”ISPRS
J. of Photogramm. and Rem. Sens., vol. 76, pp. 76–88, 2013.

[13] G. M. Morton, “A Computer Oriented Geodetic Data Base anda New
Technique in File Sequencing,” IBM, Tech. Rep., 1966.

[14] J. Elseberg, S. Magnenat, R. Siegwart, and A. Nüchter, “Comparison
of nearest-neighbor-search strategies and implementationsfor efficient
shape registration,”JOSER, vol. 3, no. 1, pp. 2–12, 2012.

[15] M. Muja and D. G. Lowe, “Fast Approximate Nearest Neighbors with
Automatic Algorithm Configuration,” inVISAPP, 2009.

[16] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),”
in ICRA, 2011.

[17] B. Steder, G. Grisetti, and W. Burgard, “Robust Place Recognition for
3D Range Data based on Point Features,” inICRA, 2010, pp. 1400–
1405.

[18] D. Munoz, J. A. D. Bagnell, N. Vandapel, and M. Hebert, “Contextual
Classification with Functional Max-Margin Markov Networks,” in
CVPR, 2009, pp. 975–982.

[19] R. C. Hoetzlein, “Fast Fixed-Radius Nearest Neighbors: Interactive
Million-Particle Fluids,” in GPU Tech. Conf., 2014.

[20] J. L. Bentley, “A Survey of Techniques for Fixed Radius Near
Neighbor Searching,” Stanford University, Tech. Rep., 1975.

[21] J. L. Bentley and J. H. Friedman, “Data Structures for Range Search-
ing,” CSUR, vol. 11, no. 4, pp. 397–409, 1979.

[22] P. J. Besl and N. D. McKay, “A Method for Registration of 3-D
Shapes,”TPAMI, vol. 14, no. 2, pp. 239–256, 1992.

