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Abstract— The selection of suitable features and their pa- canopies. Hence, we cannot exploit the range data in terms
rameters for the classification of three-dimensional laser range of first generating a segmentation and then classifying the

data is a crucial issue for high-quality results. In this paper we  gaqmants [1], or even use tracking information to segment
compare the performance of different histogram descriptors dynamic obje,cts of interest [2]

and their parameters on three urban datasets recorded with ) ool
various sensors—sweeping SICK lasers, tilting SICK lasers and ~ Generally, in a classification approach we usually have
a Velodyne 3D laser range scanner. These descriptors are 1D, two components—théata and themodel In the last years,

2D, and 3D histograms capturing the distribution of normals or  much scientific work concentrated on the development of
points around a query point. We also propose a novel histogram 46 expressive models, e.g., based on Conditional Random

descriptor, which relies on the spectral values in different scales. _. S . -
We argue that choosing a larger support radius and a z-axis Fields [3], [4], [5], similarity-preserving hashing [6],ro

based global reference frame/axis can boost the performance Stacked classification [7]. Nonetheless, to attain robust a
of all kinds of investigated classification models significantly. high-quality classification results, we also have to coesid
The 3D histograms relying on the point distribution, normal  the data part—the features extracted from the point clouds,
orientations, or spectral values, turned out to be the best cho&  \ypich enable the model to predict a label. The classification
for the classification in urban environments. . .
model and the features are two sides of the same coin: a more
I. INTRODUCTION complex model can compensate for insufficient features, and
) ) ) ) better features can compensate for a too simplistic model. A
The interpretation of sensor readings is a fundamentghear classifier with features capable to linearly sepatiae
ability required by autonomous mobile robots to fulfill yata ideally should be as effective as a highly non-linear an
different tasks in changing urban environments, such ¥dmplex classifier with very simple features.
exploration, localization, and navigation. In this cortere More precisely, we are interested in investigating and an-
are not 'only interested in dlffere'nt object categorleshsam swering the following questions: (1) What do we expect from
pedestrians, cars, or obstacles in general, but also in@®If foatyres to get a robust and high-quality result? (2) Which
properties, such as flat, rough or slippery, to deduce drifgaiyres are in this sense suitable to classify laser range
ability characteristics. Particularly the classificatiithree-  yata in an urban environment? And (3) which parameters

dimensional laser range data by rotating laser rangefindefgs required to attain high-quality classification reults
recgntly rece!ved increasing interest, as nowadays de@i®® | this contribution, we answer these guestions for the
available, which offer complet&0° laser range scans of the gint.wise classification in urban environments. We will

environment in a fraction of a second. investigate the usage of histogram-based local descsiptor
Especially in outdoor and urban environments, lasgpy this purpose, as they showed promising results in other
rangefinders are the method of choice to generate depfBpiication areas, such as the matching of laser scans @8] an
information. Other active or passive sources, such as‘Bteerject recognition [9]. However, we have to cope with a very
vision or the yet very popular depth estimation by projettio gitferent situation compared to the mentioned application
of structured infrared light, e.g., Microsoft's Kinect, mt eas, as we encounter highly varying sampling of objects and
provide the depth accuracy at long ranges or are just Ngfyfaces. Thus, we are interested in descriptors relyinen
applicable in an outdoor scenario. A special charactereti  5qius neighborhood, i.e., all neighbors in a certain mdiu
three-dimensional laser range data is the distance-dependrather than descriptors using thenearest neighborhood.
sampling rate of objects, i.e., we get a very dense pointclou |y computer vision and computer graphics several studies
of objects and surfaces near the laser range sensor, but oglythe quality of descriptors for matching and object re¢ogn
a sparsely sampled point cloud at long range. tion were presented [10], [11]. Rust al.[12] evaluated the
We are particularly interested in a point-wise classif@ati proposed Point Feature Histograms with different classifie
as we do not only want to classify distinct objects withyng segmentation approaches—SVMs with different kernels,
well-defined boundaries, but also surfaces with less glear), nearest neighbors and-means with different distance

defined boundaries, such as ground, vegetation, and trgtrics. Still to our best knowledge this is the first thoroug
) ) investigation of these descriptors in the context of cfassi
J. Behley, V. Steinhage, and A. B. Cremers are with the Depattioie

Computer Science llI, University of Bonn, 53117 Bonn, Germany tion of three-dlmensmngl laser range data. .
{behl ey, st ei nhag, abc}@ ai . uni - bonn. de, The paper is organized as follows. In Section Il we



briefly introduce the evaluated histogram-based desecsptodenoted byn and determined separately for every feature
In Section 1ll we discuss the different reference framesector. We empirically determined that a normalization by
that are used. Section IV describes the methodology of thke maximal entry of a feature vector is superior to a

performance evaluation, the datasets, and the clasgificatinormalization by the sum of all entries.
approaches. In the following Section V we discuss the In the following, we will user € R® to denote the
experimental results. Finally, Section VI gives a con@unsi reference axis aniR ¢ R*** for the reference frame used
and presents future work. to determine the histogram indices.
Il. HISTOGRAM DESCRIPTORS
o . . . A. Histogram of Normal Orientations

As it is usual in the computer vision community, we
will term a feature adescriptor when it tries to generate  Triebel et al. [15] used a normal histogram storing the
a discriminative description of a laser point rather thatyon angle between the reference axisand the normal of a
specifying its shape properties. We can further diffesgati neighboring pointn,,q € sz. The histogram descriptor
between histogram descriptorsand signature descriptors h € R® with b entries is defined as follows:

[13]. The former ones maintain a histogram of neighboring ) )

points or their properties, and the latter calculate somglsi 1, — ,, {q oS <”> <r-n, < cos <(z +1)- w) H
value of the neighboring points—thsupport In case of b ! b

histograms we need @eference axisor reference framen @
which we determine the bin index of the property we want Regions with a strong curvature result in a uniformly
to measure.

Over the last years, a variety of descriptors for matchinﬁ!smbmed hlstog_ram, Wh'l_e flat areas lead to a peaked
of point clouds [8], [13], object recognition [9], [14] and |st(_)gram. The h|§togram is parameterl_zed by the number
classification [15], [5], [4] representing properties ofeth Of Pinsb and the size of the support region
surrounding surface of one point were proposed. In this
section, we briefly introduce histogram descriptors used iB. Spin Images
some recent work, which emerged to be a good choice for.l.he spin image [9] by Johnsoet al. is a very promi-

a descriptive representation of laser points in terms OIMhanent histogram descriptor and is use.d in several retrieval,
an\(/jvger?erl?/(eatz;)me special requirements on descriptors f(r)nratching or classifi(_:atipn apprqaches [16], [7]. A spin imag.

. . o . . IS calculated by spinning a grid around the reference axis
point-wise cIaSS|f|c§t|on of three-d|men3|-o.nal Iasgr a_angr, where the grid cells collect or 'count’ the neighboring
o oo oo SPPICSET g o < A An eny of e spin a1 < 5

; _ with indexes (i, j) is calculated using the distance to the
category of objects, e.g., we want a description that els;abl1aIne defined byp + A - r with parameter\ € R, and the
us to distinguish betvyeen diffgrept types of cars. This i istance to the plane originating ip and norrr;alr. The
ofte_n ngt necessary In classification as we onlly want t%cal coordinateg«, 8) in respect to the reference axis are
distinguish between different classes or categories, bt Nyiven by o = Inp x (q—p)| and 3 = n, - (q — p) The
single instances. In addition, this description shouldilites indexes(i, §) in ﬂ‘_"e image are calculatedpfrom and 3 by
in well-separated clusters in the feature space. Anoth?r: ! ~7dJ and;j — | p=1 - (8 +6)], wherep — 5b=" is
requirement is the ropustness o partial occlu_sions, 90 the grid resolution of t2he spin imagé. The spin images are
shadows by other opjects. Lastlly, we are Iool_<|ng for featur arameterized by the size (width and height of the spin
that are robust against very different sampling rates of t %age) and the radius of the suppért
objects. This is encountered seldom in both shape retrieval
applications, where we find similar sampling rates in the o )
database, and indoor object recognition applicationsyaet C- Distribution Histogram
we usually encounter near range scans. The distribution histogram by Anguelat al. [3] tries to

The following descriptors discussed in the following Paragapture the shape around a point in a cube defined by the
graph fulfill most of the mentioned requirements. All deBeri (oference framdr, € R4#4.
tors are local features following the taxonomy of Tangelder In order to transform a neighboring point € A?, the
et al.[11] as they represent the local neighborhood of a pOi%ference frame is inverted, i.ef, = R 'q. P
instead of determining a global description of the whole seg The distribution histogramh € RY*** is defined as
mented object. Thus we get a local representation, which 118||0WS'
robust against partial occlusions and independent of angive '
segmentation. As all descriptors use a radius neighborhood , i
/\/’g, i.e., all points in a radiu® around the query point hijr=n|¢d V’. (q +1>J =1 j . @
p instead of using the:-nearest neighbord/*, we get a 2 0 k

sampling invariant representation by a proper normabrati
of the feature vectors. The normalization constant will bevhere1 € R? denotes the vector that contains only ones.



Ill. REFERENCEFRAME AND REFERENCEAXIS

The only question left is the choice of the reference
frame or the reference axis, which are needed to calculate
the indices in the histograms. We evaluated two canonical
choices—thdocal reference frambased on eigenvectors and
a global reference framéased on the global z-axis.

The local reference fram®ioca € R*** of a point p
(b) is based on the normalized eigenvectetg vy, vo of the
covariance matrix of neighboring pointg e sz- From the
eigenvectors with eigenvalueg) < \; < Xy we can build

Fig. 1. Subdivisions used by (a) the SHOT descriptor andh®)spectral
histogram. The inner sectors or shells are depicted in biug)lone sector

of the SHOT descriptor is highlighted in light gray. the following homogeneous transformation:
V2 Vi Vo P
Riocal = 3
local 0 0 0 1 ( )

D. Signature of Histograms of Orientations (SHOT)

Recently, Tombarét al. [13] proposed to use a combina- A local reference axisioca € R® is given by v, which
tion of histograms and signatures. Their descriptor sibeg/ corresponds to the point normal, of point p. _
the space around the query point into sectors (see Figure 1?The global reference frame can be constructed using the
Then, for every sector a histogram of normal orientationglobal z-axis denoted by. We decided to use the norma)
between the neighboring point inside the sector and theyquef 9€t a rotation invariant reference frame. Following from

More precise, the histogram indéxf a neighboring point (np x2z) Xz np Xz 2
i ; =1 P
q € N7 inside a sector is calculated by(1 + r - n,)b, Reobas = | Tmexz)xzl  Tnpxz] Tl (4)
P, — : ¢ o 0 0 0 1
whereb is the number of bins in the histogram. To reduce

quantization errors, a neighboring point also contributes  Thys, only the rotation about the z-axis of the reference
histograms in neighboring sectors of the subdivision ua'ng frame depends on local information.

quadrilinear interpolation. Tombariet al[13] proposed to use a weighted version of

The authors suggested to useazimuth divisions,2  the covariance for determining the eigenvectors, thusngett
elevation divisions and radial divisions for the subdivision. a more stable reference frame in point clouds with clutter
The remaining parameters of interest are the radius of thgd also a disambiguation scheme of the directions of the
support regiond, and the number of bins in the sectoreigenvectors based on the point density. We applied this
histogramsb. weighted covariance and the disambiguation scheme only
with the SHOT descriptor.

IV. EXPERIMENTAL SETUP

E. Spectral Histogram

Motivated by the results of experiments with spectral
shape signatures, we propose to use a Spectral Histograin. Datasets
Similar to the SHOT descriptor, we calculate for every secto We evaluated the performance of the previously introduced
of a subdivision three signature values based on spectd#scriptors on datasets generated by three common 3D laser
values of points falling inside the sector. rangefinder setups—a pan-tilting 2D laser rangefinder, 2D

The eigenvalues of the covariance matrix &f points sweeping laser rangefinders, and a Velodyne HDL64-E laser
{p1,...,pn} defined by C= 1>, (p;—p)"(p; — D), rangefinder [18]. Figure 2 depicts example scans from these
p € R¥ with p = N~ }", p, encode the general distribution datasets and the distribution of laser returns for the fipeci
of the points within the support radius. Le§ < \; < A\» be  setup.
the eigenvalues of the covariance mat@xand \; = \;/ Ao The first dataset was recorded at the University of
the normalized eigenvalues. A measure of pointness thenHseiburg, Germany, using a SICK LMS laser rangefinder
defined by, surfaceness by, — Ao, and linearness by mounted on a pan-tilt unit. The point clouds were manually
Ao — A1 [17], [4]. labeled as pavement, sidewalk, lawn, pole, shrub, bush,

We subdivide the space around a point in different shell®liage, tree trunk, building facade, window, door, bigjcl
and slices, as shown in Figure 1. Letbe the number of and car. For the evaluation we only used a subset of these
slices,r the number of radial shells, and,,v,,v. be the classes and combined subclasses into more general classes:
base vectors of the reference frame. Then we add to tli&) ground consisting of pavement, sidewalk, and lawn, (2)
local covariance of sectofi,j) the pointq’ = R~ !q, if vegetationcontaining shrub, foliage, and bushes, i&ades
i=|35(¢'® +06)l] andj < [3[ld’ x v.||s]. Hence, every subsuming building facades, doors, and windows,p@les
shell collects all points up to its radius. combined with tree trunks.

For every radial shell in every slice, we get a differentecal ) ) )

. N . . . .. The registered laser range scans with the robot odometryailalale at

of the point distribution. The descrlptor IS rotation ineeut http://ais.informatik.uni-freiburg.de/projects/dagtsdfr360/. The labels can
around thez axis of the reference frame. be downloaded at http:/www.iai.uni-bonn.déddehley/data/.
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Fig. 2. Laser range data of (a) the Pittsburgh, (b) the Frgiband (c) the Wachtberg dataset used in the evaluation.diffexent labels are colored
as follows: purple ground blue =building facadesgreen =vegetation orange =poles yellow = vehicles light-blue =wire. Below every scan is the
distribution of laser returns per distance to the laser seadepicted. The red/solid curve depicts the number of lasiits perm? at this distance. The
green/dashed curve is the fraction of laser returns up taligtance.

We chose these more general classes because they conBirEvaluation Criterion
the surfaces and objects most relevant for outdoor applica-| ot y+ — {(xi,y5)},|X*| = M be a set of test
tions. Furthermore, the distinction of pavement, sideveai  .siances with grduné truth labelg, andj; = f(z;) the
lawn is often only possible by using contextual knowledgeyregicted label of a classifief trained on a separate set
Since we want to investigate the performance of loca), _ {(xi,90)}, |X] = N, X N X* = 0.
approaches, we decided to combine these different groundrpa ¢jass-wise precisiom, of a class or labek is given

clas_ses into a singlg class. The same argument holds alsp IS?/rthe ratio of correctly classified instancgis;, y*)} of the
bulding facades, windows, and doors. Poles are especiajly.

. . i . st set and all instances classified as class
interesting because they allow to reveal registrationrerro . e .
and thus can be useful to assess the perfomance of SLAM D = { (xi, y7) € X*[gs = k Nyi =k} (5)
approaches. {(xi, y7) € X[ = Kk}
The second dataset was acquired on the campus Diie class-wise recalt; is given by the ratio of correctly

the Carnegie Mellon University in Pittsburgh with a Jeeglassified instances and all instances with reference label
equipped with SICK laser scanners facing sideways and a {(xi,y7) € X*|gi = k Ay = k)|

laser scanner mounted on the front of the vehicle. The datase Tk (%o 57) € X7y = k)] (6)
contains the same labels as the Freiburg dataset, but we i Yi Yi =

additionally usevehiclesand wire like Xiong et al[7]. The The R measure is defined as the average over the class-
dataset was filtered and registered to get a complete poinise precisiong, and recalls:

cloud, and cr:junks of approximately00.000 laser points . 1 Z 2 pr - T @
were extracted. 1= % ortrn

The last dataset was recorded at the Fraunhofer FKIE in k
Wachtberg, Germany, using a Velodyne HDL-64E S2 laseFhus, we are independent of the actual number of instances.
range scanner mounted on an Opel Vectra. We also manuaftyrthermore, the Fmeasure penalizes high precision and
labeled the dataset with the classgound vegetation low recall.
facades vehicles andpoles o

All three datasets show different characteristics. Figure C- Classification Approaches
depicts the point density and the number of laser points We evaluated the descriptor performance using three dif-
per square meter. In case of the Pittsburgh dataset, we fifetent classification approaches ranging from a simplatine
homogeneous sampling of the surfaces and nearly linearodel to a more complex one based on Conditional Random
increase of points per distance (green/dashed curve in thelds.
plots). The Freiburg and Wachtberg dataset in contrast showLogistic Regression is the baseline approach, which is a
a significant drop in the sampling rate at larger distancebinary linear classifier. For multi-class classificatiorthwk
As the Velodyne HDL-64 rotates in order to generate a fultlasses, we traitk binary logistic regressions one-vs.-the-
360° scan, we also can see a ring pattern with points in thest, resulting ink binary logistic models for each class. To
same ring much closer to each other than points in differemifer the class of an unseen feature vectpmwe assign the
rings. classi such that it maximize®(y = i|x).



g . TABLE |
The second classification approach, the Spectrally HaShedPARAMETERs OF THE DESCRIPTORSVALUES USED FOR NODE AND

Logistic Regression (SHLR)[6], is an extension of the legis
tic regression that uses the principle of semantic hashing.

The idea of semantic hashing is to learn a hash function
h that results in similar hash codégx;), h(x;) for two

EDGE POTENTIALS ARE BOLD

Descriptor Parameter values

. . . Normal Histogram b={5,10,15
different, but similar feature vectors;, x;; the hamming Distribution H?Stogram b— E37577} !
distance of the codewords is small, if the euclidean diganc Spin Image b= {5,10,20}
betweenx; andx; is also small. Spectral Hashing [19] has SHOT b=1{5,10,15}

Spectral Histogram 1=1{8,5,7},s=5

shown to be an effective choice for this purpose, especially
for small codes.

In SHLR, the learned hash function clusters the space
of feature vectorsx; into similar vectors sharing the same Implementation details. The logistic regression uses the
codeword. These similar vectors are used to learn a loc&tPlementation of LibLinear [21], where we used a regular-
logistic regression model, which turns out to be far morézer weight of C' = 1.0 and a intercept off = 1.0 for all
efficient than comparing all feature vectors inside a haspxperiments. The SHLR usesbits and maximal hamming
bin to a query feature vector. To classify an unseen laséfstance of4 for the search of a matching codeword. The
point, the hash code of its feature vector is calculated arfdV®N implementatiof was adapted to our needs and used
the logistic model of this codeword is used to assign a clas@nly pair-wise potentials with linear regressors. We cleoos

Both local classifiers are compared with a collective ctassp0 iterations to learn linear regressors with learning rate of
fication approach using Conditional Random Fields (CRF)-0-1. All descriptors were implemented using C++. For the
the Functional Max-Margin Markov Networks (FW) [4]. SHOT descriptor we adapted the available implementation

These approaches try to find the MAP assignment t6 the Point Cloud Library(PCL). For every laser range scan
P(y1.n|x1.n), Which maximizes the likelihood of the joint We used an octree to determine the nearest neighbors, and

assignment of classes 19 given the featureX;: the normals of a scan were estimated using PCA [22] on a
1 neighborhood of).6 m. All experiments were performed on
P(yi.n|x1.n) = 7 H O (yi, i) an Intel Xeon X5550 with2.67 GHz and12 GB memory.
(X1:) yi€V Reference frame. We evaluated the influence of different
H bW, yis Xis X5, (8) reference frames and axes on the performance'. Tombgri
(i) EE al. [13] showed that the reference frame and its stability

significantly affect the performance in the matching task. |
this also valid with the classification of three-dimensiona
laser range data?

where the underlying grapi = (V, £) is given by vertices
y; representing random variables for labels antbr feature
vectors of every laser point, and eddes. y;) € & between  rjq 1o 3 4 and 5 depict the performance using the local
them, if there exist a direct dependency(Xi.n) iS @ | otarence frame. Comparing these results with the global
norm_ahzer depending on the featur_e_ v_ectors—_the PartitioRference frame-based descriptors, we observe a sigrifican
function. For mare detalls on prababilisiic graphical msde improvement over the local reference frame. Particuldréy t
we refer to [20]. . . Distribution Histogram is strongly affected by the choide o
'_I'he edges are given by tri@nearest n(?ghbors of a lasery,q reference frame. The normal histogram only shows a
point p;, I.e., (yi,y;) € & if Pj. € Npi,' AS propose.d minor effect when changing the reference frame.
by Xiong et al. [7], we use a ‘similarity’ edge potengal The global reference frame is more stable than the local
¥(gi, 5, %:,%;) computed from the nodeT features, x;:  ofarence frame, as the eigenvalues are affected by clutter
Wy, vj, X X;) = Hyi = yj}_' exp(—w; - Xij), (\I/C\ghere However, in the presented datasets we only observe man-
the k-th entry of x;; € R™ is calculated asx;; made objects and scatter by vegetation, which both tend to

-1
1+ Xz('k) _ ng) . i.e., the more similar the node fea-have a vertical orientation. Thus, the z-axis is a betteicgho

tures, the larger the entries in the edge featupe 1{s} in this application, as we do not have arbitrary rotations of
denotes the indicator function that returhif statements js ~ OPIects in the dataset. In addition, we get more discrimiaat

true. ando otherwise. histograms of ground and facades, which also improves the
performance of the classification approaches.
V. RESULTS AND DISCUSSION Support radius. The diagrams also show a significant

We performed a5-fold cross-validation for all datasets increase in classification performance of all approach#és wi
using the histogram descriptors. For this purpose, wetgglec an increase of the support radius. An increasing radius of
5 representative and non-overlappidg)° laser range scans the histograms also includes more contextual information o
from every dataset. We only evaluated a subset of parameténg vicinity. For instance, all classifiers performed bette
with the CRFs, which allowed us to store the networks witltlassifying cars when the support radius is increased. This
node and edge potentials in memory. Hence, we were alike an unexpected result as cars are rather complex objects
to evaluate the CRFs using large descriptors in reasonable
time. Table | shows the evaluated feature parameters. 2pvailable at http://www.cs.cmu.edumr/software!.
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TABLE I
PRECISION AND RECALL OF THE DIFFERENT APPROACHES ON THEREIBURG DATASET.

C Feature b ¢ Fi ground facade pole vegetation
Normal Histogram 10 2.0 716 97.9/95.0 87.0/85.2 20.2/50.0 884/7

o Distribution Histogram 7 1.5 77.7 98.9/99.0 89.2/84.2 48.5/64.9 83.5/7
T Spin Image 5 20 765 97.9/99.0 84.3/80.4 51.4/72.5 78.7/69.8
n SHOT 15 15 79.1 98.6/98.8 89.5/88.5 38.4/69.1 88.8/78.9

Spectral Histogram 7 15816 985/985 925/89 50.4/67.5 89.8/82.8
Normal Histogram 15 2.0 69.7 984/949 95.6/87.8 5.65/10.4 833/8

Z Distribution Histogram 5 1.5 79.2 98.9/99.1 92.3/84.1 53.1/65.9 80.3/82.1
g Spin Image 10 2.0 729 98.9/99.2 85.3/82.1 27.8/60.6 83.8/76.1
L SHOT 10 2.0 83.3 99.1/99.3 94.3/89.8 61.4/67.7 85.1/87.2

Spectral Histogram 3 10792 99.0/98.3 92.1/81.0 46.7/77.1 78.0/80.7

with both flat and curved surfaces. However, vehicles amadius, as one bin gets too large to capture the structure of
usually parked/driven on flat ground, which seems to bthe different classes. The influence of the number of bins
the discriminating property of cars in the Pittsburgh detas is more severe with the normal histogram than with the
So if the classifier recognizes something that resides on flathers. We can see a significant drop in performance with
ground, this is most likely a vehicle. Thus, we can indingctl an increasing radius of the normal histogram. The resaliutio
encode—to some extent—the context in features for a locaf the histogram gets too coarse to capture the differences
classifier. This is also achieved in collective approaches tbetween the classes. The distribution histogram with dloba
a more complex model, or can be directly incorporated byeference frame is less affected by the number of bins, but
stacking with multiple logistic regressions [7]. by inspecting the results visually, we conclude that a bette

In the Wachtberg dataset, this contextual information dogserformance is achieved with more bins.
not always help, as there are shrubs/bushes on flat lawnsClass-wise Performance. Tables I, Ill and IV show the
Hence, in this dataset the classeshicleand vegetationare precision and recall of the classes using descriptors with a
more often confused with other classes than in the Pittéburglobal reference frame. We only show the best results with
dataset. every descriptor using SHLR and the ENL

We also experimented with larger radii th&0m, but The class-wise precision and recall reveal the deficiency
these turned out to entail no significant improvement, oof the different descriptors. Generally, the clasgesund
even decreased the perfomance of the different classificatifacades andvegetationcould be well distinguished from the
approaches. other classesPoles vehicles andwire turned out to be the

Number of Bins. Another factor is the number of bins more challenging classes. Especially, the clag® in the
for the different histograms. We used different numbers d®ittsburgh dataset was mostly confused with vegetatior. Th
bins per dimension, i.e3, 5, and7 bins. We see a profound classwire was mostly assigned to wires from utility poles,
difference of the overall accuracy using different numlmdrs i.e., these wires are only sparsely sampled by laser points.
bins—especially with a larger radius of the histograms. W&hus, wires look similar to vegetation, where many laser
find a degradation of th8 bins histograms with increasing beams just pass through the foliage.
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Fig. 4. Results on the Pittsburgh dataset. In (a) we useda teterence frame or axis, in (b) the global reference frame weed. Multiple bars for a
feature result from different numbers of bins.

TABLE Il
PRECISION AND RECALL OF THE DIFFERENT APPROACHES ON THBITTSBURGH DATASET.

C Feature b ¢ F1 wire pole ground  vegetation facade vehicle
Normal Histogram 5 20 543 21.8/475 2.3/29.2 98.8/98.0 96.0/9188.6/79.3 22.3/35.4

o Distribution Histogram 7 2.0 69.5 22.8/43.4 53.1/66.2 98.8/99.5 96.3/86.1 80.9/82.4 65.2/72.2

T Spin Image 5 15 647 27.3/44.0 59.0/73.5 98.5/99.2 92.1/78.57/M@76 48.1/59.8

n SHOT 10 2.0 63.6 14.4/32.8 18.7/46.2 99.1/99.2 96.5/90.4 89M/8F0.4/68.2
Spectral Histogram 7 15 66.2 359/41.7 515/68.8 99.1/99.2 9R11/8 78.9/75.9 46.9/58.3
Normal Histogram 15 2.0 55.9 0.0/0.0 0.7/20.0 99.5/97.9 97.1/9082.2/80.2 66.7/62.1

z Distribution Histogram 5 0.5 73.2 32.5/50.0 69.9/66.1 99.2/99.4 97.2/89.6 84.1/85.6 52.6/73.7

s Spin Image 10 2.0 72.6 29.5/54.7 65.3/69.0 98.9/99.4 96.4/87.2 74.4/87.8 71.4/69.5

L

SHOT 10 1.0 552 455/41.9 42.6/50.4 99.1/91.4 98.3/85.3 1271/588.8/71.9
Spectral Histogram 5 1.0 638 29.8/36.1 14.1/54.0 99.5/99.4 96B/8 87.7/84.9 63.5/75.8

In the Wachtberg dataset, vehicles were nearly alwayasl evaluated classification approaches. Here a z-axisebas
confused with vegetation. Here the front part of a car iseference frame was superior to the usual normal-based ref-
similar to lower bushes and shrubs. In all datasets therence frame. Second, we could show that the performance
windows in the facades and the induced sparsity of lasstrongly correlates to the support radius. Choosing a targe
returns lead to a classification as vegetation. support radius improved the descriptiveness significantly

In case of a linear classifier, the SHOT and the Distributiohast, we showed that the influence of the number of bins
Histogram using the global reference frame seem to beis not as strong as the influence of the support radius. In
good choice. A radiug of 1.5m to 2.0m was needed to all experiments the 3D histograms—Distribution Histogram,
attain good classification results. With more complex medel SHOT, and Spectral Histogram—were the descriptors that
such as SHLR and FRN, the Spin Image and the Spectralresulted in the best performance.

Histogram also were effective representations of the diffe An interesting avenue for future work is the investigation
classes. The normal histograms turned out to be insufficieaf segment descriptors using thenearest neighborhood for
for the classification of poles and also vehicles. objects with well-defined boundaries, such as cars or people
Another interesting issue is the combination with othepgha
VI. CONCLUSIONS AND FUTURE WORK properties and the investigation of suitable combinations

The choice of suitable features dramatically influences the
performance of classification approaches. In this cortinbu VIl. ACKNOWLEDGMENTS
we evaluated several histogram-based descriptors for theThanks to Daniel Munoz for providing hints on their
classification of three-dimensional laser range data in a@V3N implementation. We also want to thank Samuele Salti
outdoor scenario. We evaluated the descriptors on threed Federico Tombari for making the SHOT available in the
datasets acquired with different state-of-the-art seestups. PCL. Thanks to Dirk Schulz, Achim &higs, Frank Hller,

From the presented results we can draw several comimo Rdhling, and Ansgar Tessmer at the Fraunhofer FKIE.
clusions. First, we showed that a proper choice of th&pecial thanks to Daniel Seidel, Dominik A. Klein, Florian
reference frame can significantly improve the performarice &ctdler, and Jenny Balfer for fruitful discussions.
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feature result from different numbers of bins.
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TABLE IV
PRECISION AND RECALL OF THE DIFFERENT APPROACHES ON TH&VACHTBERG DATASET.

C Feature b § F. vehicle ground facade pole vegetation
Normal Histogram 15 2.0 553 20.8/32.1 091.7/87.4 92.2/88.8 1675/1 73.2/70.5

o Distribution Histogram 7 1.5 71.5 52.7/62.2 93.2/92.4 81.6/81.1 48.5/72.6 76.2/70.5

T Spin Image 10 2.0 704 53.2/61.2 96.0/92.1 71.4/70.9 53.2/76.8.9/7129

n SHOT 10 15 66.5 48.0/63.7 94.3/88.2 89.9/85.6 21.7/60.4 72D/72
Spectral Histogram 7 15714 47.2/63.2 95.3/92.1 78.3/77.4 53.4/745 76.3/72.0
Normal Histogram 15 2.0 517 4.7/27.6 95.2/84.8 95.8/86.8 0@/20.72.7/72.4

z Distribution Histogram 5 1.0 70.8 30.9/65.8 97.7/91.2 84.3/74.2 68.9/7 79.0/79.0

s Spin Image 10 2.0 685 26.5/64.0 98.3/92.9 79.9/78.4 47.0/78.1.3/7&.6

L SHOT 10 15 73.9 54.6/67.8 97.6/89.2 92.3/89.5 49.1/59.6 75.3/80.7
Spectral Histogram 5 15 686 36.4/60.7 96.7/90.5 79.2/75.1 BL%H/6 72.6/71.9
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