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Abstract— The selection of suitable features and their pa-
rameters for the classification of three-dimensional laser range
data is a crucial issue for high-quality results. In this paper we
compare the performance of different histogram descriptors
and their parameters on three urban datasets recorded with
various sensors—sweeping SICK lasers, tilting SICK lasers and
a Velodyne 3D laser range scanner. These descriptors are 1D,
2D, and 3D histograms capturing the distribution of normals or
points around a query point. We also propose a novel histogram
descriptor, which relies on the spectral values in different scales.
We argue that choosing a larger support radius and a z-axis
based global reference frame/axis can boost the performance
of all kinds of investigated classification models significantly.
The 3D histograms relying on the point distribution, normal
orientations, or spectral values, turned out to be the best choice
for the classification in urban environments.

I. INTRODUCTION

The interpretation of sensor readings is a fundamental
ability required by autonomous mobile robots to fulfill
different tasks in changing urban environments, such as
exploration, localization, and navigation. In this context we
are not only interested in different object categories, such as
pedestrians, cars, or obstacles in general, but also in surface
properties, such as flat, rough or slippery, to deduce driv-
ability characteristics. Particularly the classificationof three-
dimensional laser range data by rotating laser rangefinders
recently received increasing interest, as nowadays devices are
available, which offer complete360◦ laser range scans of the
environment in a fraction of a second.

Especially in outdoor and urban environments, laser
rangefinders are the method of choice to generate depth
information. Other active or passive sources, such as stereo
vision or the yet very popular depth estimation by projection
of structured infrared light, e.g., Microsoft’s Kinect, donot
provide the depth accuracy at long ranges or are just not
applicable in an outdoor scenario. A special characteristic of
three-dimensional laser range data is the distance-dependent
sampling rate of objects, i.e., we get a very dense point cloud
of objects and surfaces near the laser range sensor, but only
a sparsely sampled point cloud at long range.

We are particularly interested in a point-wise classification,
as we do not only want to classify distinct objects with
well-defined boundaries, but also surfaces with less clearly
defined boundaries, such as ground, vegetation, and tree

J. Behley, V. Steinhage, and A. B. Cremers are with the Department of
Computer Science III, University of Bonn, 53117 Bonn, Germany.
{behley,steinhag,abc}@iai.uni-bonn.de,

canopies. Hence, we cannot exploit the range data in terms
of first generating a segmentation and then classifying the
segments [1], or even use tracking information to segment
dynamic objects of interest [2].

Generally, in a classification approach we usually have
two components—thedata and themodel. In the last years,
much scientific work concentrated on the development of
more expressive models, e.g., based on Conditional Random
Fields [3], [4], [5], similarity-preserving hashing [6], or
stacked classification [7]. Nonetheless, to attain robust and
high-quality classification results, we also have to consider
the data part—the features extracted from the point clouds,
which enable the model to predict a label. The classification
model and the features are two sides of the same coin: a more
complex model can compensate for insufficient features, and
better features can compensate for a too simplistic model. A
linear classifier with features capable to linearly separate the
data ideally should be as effective as a highly non-linear and
complex classifier with very simple features.

More precisely, we are interested in investigating and an-
swering the following questions: (1) What do we expect from
features to get a robust and high-quality result? (2) Which
features are in this sense suitable to classify laser range
data in an urban environment? And (3) which parameters
are required to attain high-quality classification results?

In this contribution, we answer these questions for the
point-wise classification in urban environments. We will
investigate the usage of histogram-based local descriptors
for this purpose, as they showed promising results in other
application areas, such as the matching of laser scans [8] and
object recognition [9]. However, we have to cope with a very
different situation compared to the mentioned applicationar-
eas, as we encounter highly varying sampling of objects and
surfaces. Thus, we are interested in descriptors relying onthe
radius neighborhood, i.e., all neighbors in a certain radius,
rather than descriptors using thek-nearest neighborhood.

In computer vision and computer graphics several studies
on the quality of descriptors for matching and object recogni-
tion were presented [10], [11]. Rusuet al. [12] evaluated the
proposed Point Feature Histograms with different classifiers
and segmentation approaches—SVMs with different kernels,
k nearest neighbors andk-means with different distance
metrics. Still to our best knowledge this is the first thorough
investigation of these descriptors in the context of classifica-
tion of three-dimensional laser range data.

The paper is organized as follows. In Section II we



briefly introduce the evaluated histogram-based descriptors.
In Section III we discuss the different reference frames
that are used. Section IV describes the methodology of the
performance evaluation, the datasets, and the classification
approaches. In the following Section V we discuss the
experimental results. Finally, Section VI gives a conclusion
and presents future work.

II. HISTOGRAM DESCRIPTORS

As it is usual in the computer vision community, we
will term a feature adescriptor when it tries to generate
a discriminative description of a laser point rather than only
specifying its shape properties. We can further differentiate
between histogram descriptorsand signature descriptors
[13]. The former ones maintain a histogram of neighboring
points or their properties, and the latter calculate some single
value of the neighboring points—thesupport. In case of
histograms we need areference axisor reference framein
which we determine the bin index of the property we want
to measure.

Over the last years, a variety of descriptors for matching
of point clouds [8], [13], object recognition [9], [14] and
classification [15], [5], [4] representing properties of the
surrounding surface of one point were proposed. In this
section, we briefly introduce histogram descriptors used in
some recent work, which emerged to be a good choice for
a descriptive representation of laser points in terms of shape
and geometry.

We have some special requirements on descriptors for
point-wise classification of three-dimensional laser range
data. In shape retrieval or object recognition applications,
we want to discriminate between different instances of a
category of objects, e.g., we want a description that enables
us to distinguish between different types of cars. This is
often not necessary in classification as we only want to
distinguish between different classes or categories, but not
single instances. In addition, this description should result
in well-separated clusters in the feature space. Another
requirement is the robustness to partial occlusions, e.g.,scan
shadows by other objects. Lastly, we are looking for features
that are robust against very different sampling rates of the
objects. This is encountered seldom in both shape retrieval
applications, where we find similar sampling rates in the
database, and indoor object recognition applications, as there
we usually encounter near range scans.

The following descriptors discussed in the following para-
graph fulfill most of the mentioned requirements. All descrip-
tors are local features following the taxonomy of Tangelder
et al. [11] as they represent the local neighborhood of a point
instead of determining a global description of the whole seg-
mented object. Thus we get a local representation, which is
robust against partial occlusions and independent of a given
segmentation. As all descriptors use a radius neighborhood
N δ

p , i.e., all points in a radiusδ around the query point
p instead of using thek-nearest neighborsN k

p , we get a
sampling invariant representation by a proper normalization
of the feature vectors. The normalization constant will be

denoted byη and determined separately for every feature
vector. We empirically determined that a normalization by
the maximal entry of a feature vector is superior to a
normalization by the sum of all entries.

In the following, we will user ∈ IR3 to denote the
reference axis andR ∈ IR4×4 for the reference frame used
to determine the histogram indices.

A. Histogram of Normal Orientations

Triebel et al. [15] used a normal histogram storing the
angle between the reference axisr and the normal of a
neighboring pointnq,q ∈ N δ

p . The histogram descriptor
h ∈ IRb with b entries is defined as follows:
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Regions with a strong curvature result in a uniformly
distributed histogram, while flat areas lead to a peaked
histogram. The histogram is parameterized by the number
of bins b and the size of the support regionδ.

B. Spin Images

The spin image [9] by Johnsonet al. is a very promi-
nent histogram descriptor and is used in several retrieval,
matching or classification approaches [16], [7]. A spin image
is calculated by spinning a grid around the reference axis
r, where the grid cells collect or ’count’ the neighboring
points q ∈ N δ

p . An entry of the spin imageSI ∈ R
b×b

with indexes(i, j) is calculated using the distance to the
line defined byp + λ · r with parameterλ ∈ R, and the
distance to the plane originating inp and normalr. The
local coordinates(α, β) in respect to the reference axis are
given byα = ‖np × (q− p)‖ and β = np · (q − p) The
indexes(i, j) in the image are calculated fromα andβ by
i = ⌊ρ−1 · α⌋ andj = ⌊ 1

2ρ
−1 · (β + δ)⌋, whereρ = δb−1 is

the grid resolution of the spin image. The spin images are
parameterized by the sizeb (width and height of the spin
image) and the radius of the supportδ.

C. Distribution Histogram

The distribution histogram by Anguelovet al. [3] tries to
capture the shape around a point in a cube defined by the
reference frameR ∈ R

4x4.
In order to transform a neighboring pointq ∈ N δ

p , the
reference frame is inverted, i.e.,q′ = R−1q.

The distribution histogramh ∈ R
b×b×b is defined as

follows:

hi,j,k = η
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where1 ∈ R
3 denotes the vector that contains only ones.
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Fig. 1. Subdivisions used by (a) the SHOT descriptor and (b) the spectral
histogram. The inner sectors or shells are depicted in blue. In (a) one sector
of the SHOT descriptor is highlighted in light gray.

D. Signature of Histograms of Orientations (SHOT)

Recently, Tombariet al. [13] proposed to use a combina-
tion of histograms and signatures. Their descriptor subdivides
the space around the query point into sectors (see Figure 1).
Then, for every sector a histogram of normal orientations
between the neighboring point inside the sector and the query
point is calculated.

More precise, the histogram indexi of a neighboring point
q ∈ N δ

p inside a sector is calculated by12 (1 + r · nq)b,
whereb is the number of bins in the histogram. To reduce
quantization errors, a neighboring point also contributesto
histograms in neighboring sectors of the subdivision usinga
quadrilinear interpolation.

The authors suggested to use8 azimuth divisions,2
elevation divisions and2 radial divisions for the subdivision.
The remaining parameters of interest are the radius of the
support regionδ, and the number of bins in the sector
histogramsb.

E. Spectral Histogram

Motivated by the results of experiments with spectral
shape signatures, we propose to use a Spectral Histogram.
Similar to the SHOT descriptor, we calculate for every sector
of a subdivision three signature values based on spectral
values of points falling inside the sector.

The eigenvalues of the covariance matrix ofN points
{p1, . . . , pN} defined by C = 1

N

∑

i(pi − p̄)T (pi − p̄),
p ∈ R

3 with p̄ = N−1
∑

i p, encode the general distribution
of the points within the support radius. Letλ0 ≤ λ1 ≤ λ2 be
the eigenvalues of the covariance matrixC and λ̂i = λi/λ2
the normalized eigenvalues. A measure of pointness then is
defined byλ̂0, surfaceness bŷλ1 − λ̂0, and linearness by
λ̂2 − λ̂1 [17], [4].

We subdivide the space around a point in different shells
and slices, as shown in Figure 1. Lets be the number of
slices,r the number of radial shells, andvx,vy,vz be the
base vectors of the reference frame. Then we add to the
local covariance of sector(i, j) the point q′ = R−1q, if
i = ⌊ 1

2δ (q
′(3) + δ)l⌋ and j ≤ ⌊ 1

δ
‖q′ × vz‖s⌋. Hence, every

shell collects all points up to its radius.
For every radial shell in every slice, we get a different scale

of the point distribution. The descriptor is rotation invariant
around thez axis of the reference frame.

III. R EFERENCEFRAME AND REFERENCEAXIS

The only question left is the choice of the reference
frame or the reference axis, which are needed to calculate
the indices in the histograms. We evaluated two canonical
choices—thelocal reference framebased on eigenvectors and
a global reference framebased on the global z-axis.

The local reference frameRlocal ∈ IR4×4 of a point p
is based on the normalized eigenvectorsv0,v1,v2 of the
covariance matrix of neighboring pointsq ∈ N δ

p . From the
eigenvectors with eigenvaluesλ0 ≤ λ1 ≤ λ2 we can build
the following homogeneous transformation:

Rlocal =

[

v2 v1 v0 p

0 0 0 1

]

(3)

A local reference axisrlocal ∈ IR3 is given byv0, which
corresponds to the point normalnp of point p.

The global reference frame can be constructed using the
global z-axis denoted byz. We decided to use the normalnp

to get a rotation invariant reference frame. Following from
this we get the global reference frameRglobal ∈ IR4×4:

Rglobal =

[

(np×z)×z

‖(np×z)×z‖
np×z

‖np×z‖
z

‖z‖ p

0 0 0 1

]

(4)

Thus, only the rotation about the z-axis of the reference
frame depends on local information.

Tombariet al.[13] proposed to use a weighted version of
the covariance for determining the eigenvectors, thus getting
a more stable reference frame in point clouds with clutter
and also a disambiguation scheme of the directions of the
eigenvectors based on the point density. We applied this
weighted covariance and the disambiguation scheme only
with the SHOT descriptor.

IV. EXPERIMENTAL SETUP

A. Datasets

We evaluated the performance of the previously introduced
descriptors on datasets generated by three common 3D laser
rangefinder setups—a pan-tilting 2D laser rangefinder, 2D
sweeping laser rangefinders, and a Velodyne HDL64-E laser
rangefinder [18]. Figure 2 depicts example scans from these
datasets and the distribution of laser returns for the specific
setup.

The first dataset was recorded at the University of
Freiburg, Germany, using a SICK LMS laser rangefinder
mounted on a pan-tilt unit. The point clouds were manually
labeled1 as pavement, sidewalk, lawn, pole, shrub, bush,
foliage, tree trunk, building facade, window, door, bicycle,
and car. For the evaluation we only used a subset of these
classes and combined subclasses into more general classes:
(1) ground consisting of pavement, sidewalk, and lawn, (2)
vegetationcontaining shrub, foliage, and bushes, (3)facades
subsuming building facades, doors, and windows, (4)poles
combined with tree trunks.

1The registered laser range scans with the robot odometry are available at
http://ais.informatik.uni-freiburg.de/projects/datasets/fr360/. The labels can
be downloaded at http://www.iai.uni-bonn.de/∼behley/data/.
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Fig. 2. Laser range data of (a) the Pittsburgh, (b) the Freiburg, and (c) the Wachtberg dataset used in the evaluation. Thedifferent labels are colored
as follows: purple =ground, blue = building facades, green =vegetation, orange =poles, yellow = vehicles, light-blue = wire. Below every scan is the
distribution of laser returns per distance to the laser scanner depicted. The red/solid curve depicts the number of laserpoints perm2 at this distance. The
green/dashed curve is the fraction of laser returns up to thedistance.

We chose these more general classes because they contain
the surfaces and objects most relevant for outdoor applica-
tions. Furthermore, the distinction of pavement, sidewalkand
lawn is often only possible by using contextual knowledge.
Since we want to investigate the performance of local
approaches, we decided to combine these different ground
classes into a single class. The same argument holds also for
bulding facades, windows, and doors. Poles are especially
interesting because they allow to reveal registration errors
and thus can be useful to assess the perfomance of SLAM
approaches.

The second dataset was acquired on the campus of
the Carnegie Mellon University in Pittsburgh with a Jeep
equipped with SICK laser scanners facing sideways and a
laser scanner mounted on the front of the vehicle. The dataset
contains the same labels as the Freiburg dataset, but we
additionally usevehiclesand wire like Xiong et al.[7]. The
dataset was filtered and registered to get a complete point
cloud, and chunks of approximately100.000 laser points
were extracted.

The last dataset was recorded at the Fraunhofer FKIE in
Wachtberg, Germany, using a Velodyne HDL-64E S2 laser
range scanner mounted on an Opel Vectra. We also manually
labeled the dataset with the classesground, vegetation,
facades, vehicles, andpoles.

All three datasets show different characteristics. Figure2
depicts the point density and the number of laser points
per square meter. In case of the Pittsburgh dataset, we find
homogeneous sampling of the surfaces and nearly linear
increase of points per distance (green/dashed curve in the
plots). The Freiburg and Wachtberg dataset in contrast show
a significant drop in the sampling rate at larger distances.
As the Velodyne HDL-64 rotates in order to generate a full
360◦ scan, we also can see a ring pattern with points in the
same ring much closer to each other than points in different
rings.

B. Evaluation Criterion

Let X ⋆ = {(xi, y
⋆
i )}, |X

⋆| = M be a set of test
instances with ground truth labelsy⋆i , and ŷi = f(xi) the
predicted label of a classifierf trained on a separate set
X = {(xi, yi)}, |X | = N,X ∩ X ⋆ = ∅.

The class-wise precisionpk of a class or labelk is given
by the ratio of correctly classified instances{(xi, y

⋆
i )} of the

test set and all instances classified as classk:

pk =
|{(xi, y

⋆
i ) ∈ X ⋆|ŷi = k ∧ y⋆i = k}|

|{(xi, y⋆i ) ∈ X ⋆|ŷi = k}|
(5)

The class-wise recallrk is given by the ratio of correctly
classified instances and all instances with reference labelk:

rk =
|{(xi, y

⋆
i ) ∈ X ⋆|ŷi = k ∧ y⋆i = k}|

|{(xi, y⋆i ) ∈ X ⋆|y⋆i = k}|
(6)

The F1 measure is defined as the average over the class-
wise precisionspk and recallsrk:

F1 =
1

K

∑

k

2 · pk · rk
pk + rk

. (7)

Thus, we are independent of the actual number of instances.
Furthermore, the F1 measure penalizes high precision and
low recall.

C. Classification Approaches

We evaluated the descriptor performance using three dif-
ferent classification approaches ranging from a simple linear
model to a more complex one based on Conditional Random
Fields.

Logistic Regression is the baseline approach, which is a
binary linear classifier. For multi-class classification with k
classes, we traink binary logistic regressions one-vs.-the-
rest, resulting ink binary logistic models for each class. To
infer the class of an unseen feature vectorx, we assign the
classi such that it maximizesP (y = i|x).



The second classification approach, the Spectrally Hashed
Logistic Regression (SHLR)[6], is an extension of the logis-
tic regression that uses the principle of semantic hashing.

The idea of semantic hashing is to learn a hash function
h that results in similar hash codesh(xi), h(xj) for two
different, but similar feature vectorsxi, xj ; the hamming
distance of the codewords is small, if the euclidean distance
betweenxi andxj is also small. Spectral Hashing [19] has
shown to be an effective choice for this purpose, especially
for small codes.

In SHLR, the learned hash function clusters the space
of feature vectorsxi into similar vectors sharing the same
codeword. These similar vectors are used to learn a local
logistic regression model, which turns out to be far more
efficient than comparing all feature vectors inside a hash
bin to a query feature vector. To classify an unseen laser
point, the hash code of its feature vector is calculated and
the logistic model of this codeword is used to assign a class.

Both local classifiers are compared with a collective classi-
fication approach using Conditional Random Fields (CRF)—
the Functional Max-Margin Markov Networks (FM3N) [4].
These approaches try to find the MAP assignment to
P (y1:N |x1:N ), which maximizes the likelihood of the joint
assignment of classes toYi given the featuresXi:

P (y1:N |x1:N ) =
1

Z(X1:N )

∏

yi∈V

φ(yi, xi)

∏

(yi,yj)∈E

ψ(yi, yj ,xi,xj), (8)

where the underlying graphH = (V, E) is given by vertices
yi representing random variables for labels andxi for feature
vectors of every laser point, and edges(yi, yj) ∈ E between
them, if there exist a direct dependency.Z(X1:N ) is a
normalizer depending on the feature vectors—the partition
function. For more details on probabilistic graphical models,
we refer to [20].

The edges are given by thek-nearest neighbors of a laser
point pi, i.e., (yi, yj) ∈ E , if pj ∈ N k

pi. As proposed
by Xiong et al. [7], we use a ’similarity’ edge potential
ψ(yi, yj ,xi,xj) computed from the node featuresxi,xj :
ψ(yi, yj ,xi,xj) = 1{yi = yj} · exp(−wT

i · xij), where
the k-th entry of xij ∈ R

m is calculated asx(k)
ij =

(

1 + x
(k)
i − x

(k)
j

)−1

, i.e., the more similar the node fea-

tures, the larger the entries in the edge featurexij. 1{s}
denotes the indicator function that returns1 if statements is
true, and0 otherwise.

V. RESULTS AND DISCUSSION

We performed a5-fold cross-validation for all datasets
using the histogram descriptors. For this purpose, we selected
5 representative and non-overlapping360◦ laser range scans
from every dataset. We only evaluated a subset of parameters
with the CRFs, which allowed us to store the networks with
node and edge potentials in memory. Hence, we were able
to evaluate the CRFs using large descriptors in reasonable
time. Table I shows the evaluated feature parameters.

TABLE I

PARAMETERS OF THE DESCRIPTORS. VALUES USED FOR NODE AND

EDGE POTENTIALS ARE BOLD.

Descriptor Parameter values

Normal Histogram b = {5,10,15}
Distribution Histogram b = {3,5, 7}
Spin Image b = {5,10, 20}
SHOT b = {5,10, 15}
Spectral Histogram l = {3,5, 7}, s = 5

Implementation details. The logistic regression uses the
implementation of LibLinear [21], where we used a regular-
izer weight ofC = 1.0 and a intercept ofβ = 1.0 for all
experiments. The SHLR uses8 bits and maximal hamming
distance of4 for the search of a matching codeword. The
FM3N implementation2 was adapted to our needs and used
only pair-wise potentials with linear regressors. We choose
50 iterations to learn linear regressors with learning rate of
0.1. All descriptors were implemented using C++. For the
SHOT descriptor we adapted the available implementation
in the Point Cloud Library(PCL). For every laser range scan
we used an octree to determine the nearest neighbors, and
the normals of a scan were estimated using PCA [22] on a
neighborhood of0.6m. All experiments were performed on
an Intel Xeon X5550 with2.67GHz and12GB memory.

Reference frame. We evaluated the influence of different
reference frames and axes on the performance. Tombariet
al. [13] showed that the reference frame and its stability
significantly affect the performance in the matching task. Is
this also valid with the classification of three-dimensional
laser range data?

Figures 3, 4, and 5 depict the performance using the local
reference frame. Comparing these results with the global
reference frame-based descriptors, we observe a significant
improvement over the local reference frame. Particularly the
Distribution Histogram is strongly affected by the choice of
the reference frame. The normal histogram only shows a
minor effect when changing the reference frame.

The global reference frame is more stable than the local
reference frame, as the eigenvalues are affected by clutter.
However, in the presented datasets we only observe man-
made objects and scatter by vegetation, which both tend to
have a vertical orientation. Thus, the z-axis is a better choice
in this application, as we do not have arbitrary rotations of
objects in the dataset. In addition, we get more discriminative
histograms of ground and facades, which also improves the
performance of the classification approaches.

Support radius. The diagrams also show a significant
increase in classification performance of all approaches with
an increase of the support radius. An increasing radius of
the histograms also includes more contextual information of
the vicinity. For instance, all classifiers performed better in
classifying cars when the support radius is increased. This
is an unexpected result as cars are rather complex objects

2Available at http://www.cs.cmu.edu/∼vmr/software/.



0.2

0.4

0.6

0.8

1.0

0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0

c
la
s
s
if
ic
a
ti
o
n
 r
a
te

support radius

Normal Histogram Distribution Histogram Spin Image SHOT Spectral Histogram

Functional Max-Margin Markov NetworksSpectrally Hashed Logistic RegressionLogistic Regression

(a)

0.2

0.4

0.6

0.8

1.0

0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0

c
la
s
s
if
ic
a
ti
o
n
 r
a
te

support radius

Normal Histogram Distribution Histogram Spin Image SHOT Spectral Histogram

Functional Max-Margin Markov NetworksSpectrally Hashed Logistic RegressionLogistic Regression

(b)

Fig. 3. Results on the Freiburg dataset. In (a) we used a localreference frame or axis, in (b) the global reference frame was used. Multiple bars for a
feature result from different numbers of bins.

TABLE II

PRECISION AND RECALL OF THE DIFFERENT APPROACHES ON THEFREIBURG DATASET.

C Feature b δ F1 ground facade pole vegetation

S
H

LR

Normal Histogram 10 2.0 71.6 97.9/95.0 87.0/85.2 20.2/50.0 80.4/78.4
Distribution Histogram 7 1.5 77.7 98.9/99.0 89.2/84.2 48.5/64.9 81.5/76.5

Spin Image 5 2.0 76.5 97.9/99.0 84.3/80.4 51.4/72.5 78.7/69.8
SHOT 15 1.5 79.1 98.6/98.8 89.5/88.5 38.4/69.1 88.8/78.9

Spectral Histogram 7 1.5 81.6 98.5/98.5 92.5/89 50.4/67.5 89.8/82.8

F
M

3N

Normal Histogram 15 2.0 69.7 98.4/94.9 95.6/87.8 5.65/10.4 83.1/86.5
Distribution Histogram 5 1.5 79.2 98.9/99.1 92.3/84.1 53.1/65.9 80.3/82.1

Spin Image 10 2.0 72.9 98.9/99.2 85.3/82.1 27.8/60.6 83.8/76.1
SHOT 10 2.0 83.3 99.1/99.3 94.3/89.8 61.4/67.7 85.1/87.2

Spectral Histogram 3 1.0 79.2 99.0/98.3 92.1/81.0 46.7/77.1 78.0/80.7

with both flat and curved surfaces. However, vehicles are
usually parked/driven on flat ground, which seems to be
the discriminating property of cars in the Pittsburgh dataset.
So if the classifier recognizes something that resides on flat
ground, this is most likely a vehicle. Thus, we can indirectly
encode—to some extent—the context in features for a local
classifier. This is also achieved in collective approaches by
a more complex model, or can be directly incorporated by
stacking with multiple logistic regressions [7].

In the Wachtberg dataset, this contextual information does
not always help, as there are shrubs/bushes on flat lawns.
Hence, in this dataset the classesvehicleandvegetationare
more often confused with other classes than in the Pittsburgh
dataset.

We also experimented with larger radii than2.0m, but
these turned out to entail no significant improvement, or
even decreased the perfomance of the different classification
approaches.

Number of Bins. Another factor is the number of bins
for the different histograms. We used different numbers of
bins per dimension, i.e.,3, 5, and7 bins. We see a profound
difference of the overall accuracy using different numbersof
bins—especially with a larger radius of the histograms. We
find a degradation of the3 bins histograms with increasing

radius, as one bin gets too large to capture the structure of
the different classes. The influence of the number of bins
is more severe with the normal histogram than with the
others. We can see a significant drop in performance with
an increasing radius of the normal histogram. The resolution
of the histogram gets too coarse to capture the differences
between the classes. The distribution histogram with global
reference frame is less affected by the number of bins, but
by inspecting the results visually, we conclude that a better
performance is achieved with more bins.

Class-wise Performance.Tables II, III and IV show the
precision and recall of the classes using descriptors with a
global reference frame. We only show the best results with
every descriptor using SHLR and the FM3N.

The class-wise precision and recall reveal the deficiency
of the different descriptors. Generally, the classesground,
facades, andvegetationcould be well distinguished from the
other classes.Poles, vehicles, andwire turned out to be the
more challenging classes. Especially, the classwire in the
Pittsburgh dataset was mostly confused with vegetation. The
classwire was mostly assigned to wires from utility poles,
i.e., these wires are only sparsely sampled by laser points.
Thus, wires look similar to vegetation, where many laser
beams just pass through the foliage.
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Fig. 4. Results on the Pittsburgh dataset. In (a) we used a local reference frame or axis, in (b) the global reference frame was used. Multiple bars for a
feature result from different numbers of bins.

TABLE III

PRECISION AND RECALL OF THE DIFFERENT APPROACHES ON THEPITTSBURGH DATASET.

C Feature b δ F1 wire pole ground vegetation facade vehicle

S
H

LR

Normal Histogram 5 2.0 54.3 21.8/47.5 2.3/29.2 98.8/98.0 96.0/91.0 88.6/79.3 22.3/35.4
Distribution Histogram 7 2.0 69.5 22.8/43.4 53.1/66.2 98.8/99.5 96.3/86.1 80.9/82.4 65.2/72.2

Spin Image 5 1.5 64.7 27.3/44.0 59.0/73.5 98.5/99.2 92.1/78.5 67.7/71.6 48.1/59.8
SHOT 10 2.0 63.6 14.4/32.8 18.7/46.2 99.1/99.2 96.5/90.4 89.0/83.0 70.4/68.2

Spectral Histogram 7 1.5 66.2 35.9/41.7 51.5/68.8 99.1/99.2 92.1/84.1 78.9/75.9 46.9/58.3

F
M

3N

Normal Histogram 15 2.0 55.9 0.0/0.0 0.7/20.0 99.5/97.9 97.1/90.082.2/80.2 66.7/62.1
Distribution Histogram 5 0.5 73.2 32.5/50.0 69.9/66.1 99.2/99.4 97.2/89.6 84.1/85.6 52.6/73.7

Spin Image 10 2.0 72.6 29.5/54.7 65.3/69.0 98.9/99.4 96.4/87.2 74.4/87.8 71.4/69.5
SHOT 10 1.0 55.2 45.5/41.9 42.6/50.4 99.1/91.4 98.3/85.3 12.1/58.7 48.8/71.9

Spectral Histogram 5 1.0 63.8 29.8/36.1 14.1/54.0 99.5/99.4 96.3/87.2 87.7/84.9 63.5/75.8

In the Wachtberg dataset, vehicles were nearly always
confused with vegetation. Here the front part of a car is
similar to lower bushes and shrubs. In all datasets the
windows in the facades and the induced sparsity of laser
returns lead to a classification as vegetation.

In case of a linear classifier, the SHOT and the Distribution
Histogram using the global reference frame seem to be a
good choice. A radiusδ of 1.5m to 2.0m was needed to
attain good classification results. With more complex models,
such as SHLR and FM3N, the Spin Image and the Spectral
Histogram also were effective representations of the different
classes. The normal histograms turned out to be insufficient
for the classification of poles and also vehicles.

VI. CONCLUSIONS AND FUTURE WORK

The choice of suitable features dramatically influences the
performance of classification approaches. In this contribution
we evaluated several histogram-based descriptors for the
classification of three-dimensional laser range data in an
outdoor scenario. We evaluated the descriptors on three
datasets acquired with different state-of-the-art sensorsetups.

From the presented results we can draw several con-
clusions. First, we showed that a proper choice of the
reference frame can significantly improve the performance of

all evaluated classification approaches. Here a z-axis-based
reference frame was superior to the usual normal-based ref-
erence frame. Second, we could show that the performance
strongly correlates to the support radius. Choosing a larger
support radius improved the descriptiveness significantly.
Last, we showed that the influence of the number of bins
is not as strong as the influence of the support radius. In
all experiments the 3D histograms—Distribution Histogram,
SHOT, and Spectral Histogram—were the descriptors that
resulted in the best performance.

An interesting avenue for future work is the investigation
of segment descriptors using thek-nearest neighborhood for
objects with well-defined boundaries, such as cars or people.
Another interesting issue is the combination with other shape
properties and the investigation of suitable combinations.
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Fig. 5. Results on the Wachtberg dataset. In (a) we used a local reference frame or axis, in (b) the global reference frame wasused. Multiple bars for a
feature result from different numbers of bins.

TABLE IV

PRECISION AND RECALL OF THE DIFFERENT APPROACHES ON THEWACHTBERG DATASET.

C Feature b δ F1 vehicle ground facade pole vegetation

S
H

LR

Normal Histogram 15 2.0 55.3 20.8/32.1 91.7/87.4 92.2/88.8 1.75/16.4 73.2/70.5
Distribution Histogram 7 1.5 71.5 52.7/62.2 93.2/92.4 81.6/81.1 48.5/72.6 76.2/70.5

Spin Image 10 2.0 70.4 53.2/61.2 96.0/92.1 71.4/70.9 53.2/76.8 72.9/70.9
SHOT 10 1.5 66.5 48.0/63.7 94.3/88.2 89.9/85.6 21.7/60.4 72.0/72.7

Spectral Histogram 7 1.5 71.4 47.2/63.2 95.3/92.1 78.3/77.4 53.4/74.5 76.3/72.0

F
M

3N

Normal Histogram 15 2.0 51.7 4.7/27.6 95.2/84.8 95.8/86.8 0.2/20.0 72.7/72.4
Distribution Histogram 5 1.0 70.8 30.9/65.8 97.7/91.2 84.3/74.2 60.7/75.9 79.0/79.0

Spin Image 10 2.0 68.5 26.5/64.0 98.3/92.9 79.9/78.4 47.0/78.1 81.3/73.6
SHOT 10 1.5 73.9 54.6/67.8 97.6/89.2 92.3/89.5 49.1/59.6 75.3/80.7

Spectral Histogram 5 1.5 68.6 36.4/60.7 96.7/90.5 79.2/75.1 51.6/68.5 72.6/71.9
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